Loading…
Early Software Fault Prediction Using Real Time Defect Data
Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software d...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-fcac5475b03cc3c3d5908e6fa86055be097260be3712cc956f2022da974b0dd23 |
---|---|
cites | |
container_end_page | 245 |
container_issue | |
container_start_page | 242 |
container_title | |
container_volume | |
creator | Kaur, A. Sandhu, P.S. Bra, A.S. |
description | Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model. |
doi_str_mv | 10.1109/ICMV.2009.54 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5381121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5381121</ieee_id><sourcerecordid>5381121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-fcac5475b03cc3c3d5908e6fa86055be097260be3712cc956f2022da974b0dd23</originalsourceid><addsrcrecordid>eNo1zL1OwzAUQGEjhASUbGwsfoGEe_0biwmlLVQqAkHLWjnONTJKW5QYVX17BmA6-pbD2DVChQjudtE8vVcCwFVanbDC2RqVUEobpfGUXf5DqXNWjOMnAKAzVhu8YHczP_RH_raP-eAH4nP_3Wf-MlCXQk77HV-PaffBX8n3fJW2xKcUKWQ-9dlfsbPo-5GKv07Yej5bNY_l8vlh0dwvyyCwzmUMPmhldQsyBBlkpx3UZKKvDWjdEjgrDLQkLYoQnDZRgBCdd1a10HVCTtjN7zcR0eZrSFs_HDda1ogC5Q9uakZa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Early Software Fault Prediction Using Real Time Defect Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaur, A. ; Sandhu, P.S. ; Bra, A.S.</creator><creatorcontrib>Kaur, A. ; Sandhu, P.S. ; Bra, A.S.</creatorcontrib><description>Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model.</description><identifier>ISBN: 1424456444</identifier><identifier>ISBN: 0769539440</identifier><identifier>ISBN: 9780769539447</identifier><identifier>ISBN: 9781424456444</identifier><identifier>EISBN: 9781424456451</identifier><identifier>EISBN: 1424456452</identifier><identifier>DOI: 10.1109/ICMV.2009.54</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault diagnosis ; Learning systems ; NASA ; Neural networks ; Predictive models ; Software measurement ; Software quality ; Software testing ; Statistical analysis ; Training data</subject><ispartof>2009 Second International Conference on Machine Vision, 2009, p.242-245</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-fcac5475b03cc3c3d5908e6fa86055be097260be3712cc956f2022da974b0dd23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5381121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5381121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaur, A.</creatorcontrib><creatorcontrib>Sandhu, P.S.</creatorcontrib><creatorcontrib>Bra, A.S.</creatorcontrib><title>Early Software Fault Prediction Using Real Time Defect Data</title><title>2009 Second International Conference on Machine Vision</title><addtitle>ICMV</addtitle><description>Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model.</description><subject>Fault diagnosis</subject><subject>Learning systems</subject><subject>NASA</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Software measurement</subject><subject>Software quality</subject><subject>Software testing</subject><subject>Statistical analysis</subject><subject>Training data</subject><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><isbn>9781424456451</isbn><isbn>1424456452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1zL1OwzAUQGEjhASUbGwsfoGEe_0biwmlLVQqAkHLWjnONTJKW5QYVX17BmA6-pbD2DVChQjudtE8vVcCwFVanbDC2RqVUEobpfGUXf5DqXNWjOMnAKAzVhu8YHczP_RH_raP-eAH4nP_3Wf-MlCXQk77HV-PaffBX8n3fJW2xKcUKWQ-9dlfsbPo-5GKv07Yej5bNY_l8vlh0dwvyyCwzmUMPmhldQsyBBlkpx3UZKKvDWjdEjgrDLQkLYoQnDZRgBCdd1a10HVCTtjN7zcR0eZrSFs_HDda1ogC5Q9uakZa</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Kaur, A.</creator><creator>Sandhu, P.S.</creator><creator>Bra, A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Early Software Fault Prediction Using Real Time Defect Data</title><author>Kaur, A. ; Sandhu, P.S. ; Bra, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-fcac5475b03cc3c3d5908e6fa86055be097260be3712cc956f2022da974b0dd23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Fault diagnosis</topic><topic>Learning systems</topic><topic>NASA</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Software measurement</topic><topic>Software quality</topic><topic>Software testing</topic><topic>Statistical analysis</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaur, A.</creatorcontrib><creatorcontrib>Sandhu, P.S.</creatorcontrib><creatorcontrib>Bra, A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaur, A.</au><au>Sandhu, P.S.</au><au>Bra, A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early Software Fault Prediction Using Real Time Defect Data</atitle><btitle>2009 Second International Conference on Machine Vision</btitle><stitle>ICMV</stitle><date>2009-12</date><risdate>2009</risdate><spage>242</spage><epage>245</epage><pages>242-245</pages><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><eisbn>9781424456451</eisbn><eisbn>1424456452</eisbn><abstract>Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model.</abstract><pub>IEEE</pub><doi>10.1109/ICMV.2009.54</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424456444 |
ispartof | 2009 Second International Conference on Machine Vision, 2009, p.242-245 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5381121 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fault diagnosis Learning systems NASA Neural networks Predictive models Software measurement Software quality Software testing Statistical analysis Training data |
title | Early Software Fault Prediction Using Real Time Defect Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early%20Software%20Fault%20Prediction%20Using%20Real%20Time%20Defect%20Data&rft.btitle=2009%20Second%20International%20Conference%20on%20Machine%20Vision&rft.au=Kaur,%20A.&rft.date=2009-12&rft.spage=242&rft.epage=245&rft.pages=242-245&rft.isbn=1424456444&rft.isbn_list=0769539440&rft.isbn_list=9780769539447&rft.isbn_list=9781424456444&rft_id=info:doi/10.1109/ICMV.2009.54&rft.eisbn=9781424456451&rft.eisbn_list=1424456452&rft_dat=%3Cieee_6IE%3E5381121%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-fcac5475b03cc3c3d5908e6fa86055be097260be3712cc956f2022da974b0dd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5381121&rfr_iscdi=true |