Loading…
Planar Ku -Band 4 \,\times\, 4 Nolen Matrix in SIW Technology
In this paper, a 4 × 4 Nolen matrix beam-forming network for multibeam antenna applications is designed and demonstrated at 12.5-GHz center frequency. The structure is implemented using substrate integrated waveguide (SIW) technology for its attractive advantages including compact size, low loss, li...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2010-02, Vol.58 (2), p.259-266 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a 4 × 4 Nolen matrix beam-forming network for multibeam antenna applications is designed and demonstrated at 12.5-GHz center frequency. The structure is implemented using substrate integrated waveguide (SIW) technology for its attractive advantages including compact size, low loss, light weight, and planar form well suitable for high-density integration with other microwave and millimeter-wave planar integrated circuits. SIW cruciform couplers are used as fundamental building blocks for their wide range of coupling factors and their specific topology well adapted to the serial feeding topology of a Nolen matrix. The network performances are investigated over a 500-MHz frequency bandwidth ranging from 12.25 to 12.75 GHz. The matrix definition based on SIW cruciform couplers is similar to its microstrip counterpart in terms of coupling factors and phase delays. The whole network is fabricated. Measured results are in good agreement with the theoretical predictions, thus validating the proposed design concept. Using this matrix with a four radiating elements array antenna enables us to investigate the impact of the proposed matrix on the beam pointing angles versus frequency. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2009.2037866 |