Loading…

Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions

Laplacianfaces is a recent addition to appearance based face recognition algorithms with promising future potential. Unlike Eigenfaces algorithm, Laplacianfaces algorithm finds an embedding that preserves the locality information of the subjects in feature space. In this study we have comprehensivel...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhatti, Z.E., Bajwa, U.I., Taj, I.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Bhatti, Z.E.
Bajwa, U.I.
Taj, I.A.
description Laplacianfaces is a recent addition to appearance based face recognition algorithms with promising future potential. Unlike Eigenfaces algorithm, Laplacianfaces algorithm finds an embedding that preserves the locality information of the subjects in feature space. In this study we have comprehensively evaluated the performance of Laplacianfaces against PCA on FERET face-image database using csuFaceIdEval as the testing platform. The effect of internal parameters, including size of locality to be preserved, the choice of distance measure to determine locality and the number of leading eigenvalues to be used for matching has been thoroughly studied for the first time. The impact of illumination, face expression and age variations on the relative performance of Laplacianfaces and Eigenfaces has been shown to be very significant and best parameter settings for enhanced performance have been proposed.
doi_str_mv 10.1109/INMIC.2009.5383116
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5383116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5383116</ieee_id><sourcerecordid>5383116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bcb937c0e03ef10a47852a5098a95249337005c7dd30139e4ccf73a4eaf61d6f3</originalsourceid><addsrcrecordid>eNo1UM1OAjEYrDEkCvICeukLgF-3LW2PhvizCeqFO_noftUS6G7axcS3d1Gcy8wkk8lkGLsVMBcC3H399lov5xWAm2tppRCLCzZ1xgpVKaWske6Sjf9NZUZsfMo60BbsFZuWsoMBSksF5prt6tTntjn6mD54oZ63gcfUU0645x1mPNBgCg9t5ivs9ugjJh7QU-F9yyl9YvLEO8pD4vCrj6mhzL8wf586fZua2Mc2lRs2CrgvND3zhK2fHtfLl9nq_blePqxm0UE_2_qtk8YDgaQgAJWxukINzqLTlXJSGgDtTdNIENKR8j4YiYowLESzCHLC7v5qIxFtuhwPw5LN-Sr5A55QXKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhatti, Z.E. ; Bajwa, U.I. ; Taj, I.A.</creator><creatorcontrib>Bhatti, Z.E. ; Bajwa, U.I. ; Taj, I.A.</creatorcontrib><description>Laplacianfaces is a recent addition to appearance based face recognition algorithms with promising future potential. Unlike Eigenfaces algorithm, Laplacianfaces algorithm finds an embedding that preserves the locality information of the subjects in feature space. In this study we have comprehensively evaluated the performance of Laplacianfaces against PCA on FERET face-image database using csuFaceIdEval as the testing platform. The effect of internal parameters, including size of locality to be preserved, the choice of distance measure to determine locality and the number of leading eigenvalues to be used for matching has been thoroughly studied for the first time. The impact of illumination, face expression and age variations on the relative performance of Laplacianfaces and Eigenfaces has been shown to be very significant and best parameter settings for enhanced performance have been proposed.</description><identifier>ISBN: 1424448727</identifier><identifier>ISBN: 9781424448722</identifier><identifier>EISBN: 9781424448739</identifier><identifier>EISBN: 1424448735</identifier><identifier>DOI: 10.1109/INMIC.2009.5383116</identifier><identifier>LCCN: 2009905808</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eigenvalues and eigenfunctions ; Embedded computing ; Face detection ; Face recognition ; Laplace equations ; Pattern recognition ; Principal component analysis ; Size measurement ; Spatial databases ; Testing</subject><ispartof>2009 IEEE 13th International Multitopic Conference, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5383116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5383116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhatti, Z.E.</creatorcontrib><creatorcontrib>Bajwa, U.I.</creatorcontrib><creatorcontrib>Taj, I.A.</creatorcontrib><title>Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions</title><title>2009 IEEE 13th International Multitopic Conference</title><addtitle>INMIC</addtitle><description>Laplacianfaces is a recent addition to appearance based face recognition algorithms with promising future potential. Unlike Eigenfaces algorithm, Laplacianfaces algorithm finds an embedding that preserves the locality information of the subjects in feature space. In this study we have comprehensively evaluated the performance of Laplacianfaces against PCA on FERET face-image database using csuFaceIdEval as the testing platform. The effect of internal parameters, including size of locality to be preserved, the choice of distance measure to determine locality and the number of leading eigenvalues to be used for matching has been thoroughly studied for the first time. The impact of illumination, face expression and age variations on the relative performance of Laplacianfaces and Eigenfaces has been shown to be very significant and best parameter settings for enhanced performance have been proposed.</description><subject>Eigenvalues and eigenfunctions</subject><subject>Embedded computing</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Laplace equations</subject><subject>Pattern recognition</subject><subject>Principal component analysis</subject><subject>Size measurement</subject><subject>Spatial databases</subject><subject>Testing</subject><isbn>1424448727</isbn><isbn>9781424448722</isbn><isbn>9781424448739</isbn><isbn>1424448735</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1OAjEYrDEkCvICeukLgF-3LW2PhvizCeqFO_noftUS6G7axcS3d1Gcy8wkk8lkGLsVMBcC3H399lov5xWAm2tppRCLCzZ1xgpVKaWske6Sjf9NZUZsfMo60BbsFZuWsoMBSksF5prt6tTntjn6mD54oZ63gcfUU0645x1mPNBgCg9t5ivs9ugjJh7QU-F9yyl9YvLEO8pD4vCrj6mhzL8wf586fZua2Mc2lRs2CrgvND3zhK2fHtfLl9nq_blePqxm0UE_2_qtk8YDgaQgAJWxukINzqLTlXJSGgDtTdNIENKR8j4YiYowLESzCHLC7v5qIxFtuhwPw5LN-Sr5A55QXKw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Bhatti, Z.E.</creator><creator>Bajwa, U.I.</creator><creator>Taj, I.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions</title><author>Bhatti, Z.E. ; Bajwa, U.I. ; Taj, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bcb937c0e03ef10a47852a5098a95249337005c7dd30139e4ccf73a4eaf61d6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Eigenvalues and eigenfunctions</topic><topic>Embedded computing</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Laplace equations</topic><topic>Pattern recognition</topic><topic>Principal component analysis</topic><topic>Size measurement</topic><topic>Spatial databases</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhatti, Z.E.</creatorcontrib><creatorcontrib>Bajwa, U.I.</creatorcontrib><creatorcontrib>Taj, I.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhatti, Z.E.</au><au>Bajwa, U.I.</au><au>Taj, I.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions</atitle><btitle>2009 IEEE 13th International Multitopic Conference</btitle><stitle>INMIC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424448727</isbn><isbn>9781424448722</isbn><eisbn>9781424448739</eisbn><eisbn>1424448735</eisbn><abstract>Laplacianfaces is a recent addition to appearance based face recognition algorithms with promising future potential. Unlike Eigenfaces algorithm, Laplacianfaces algorithm finds an embedding that preserves the locality information of the subjects in feature space. In this study we have comprehensively evaluated the performance of Laplacianfaces against PCA on FERET face-image database using csuFaceIdEval as the testing platform. The effect of internal parameters, including size of locality to be preserved, the choice of distance measure to determine locality and the number of leading eigenvalues to be used for matching has been thoroughly studied for the first time. The impact of illumination, face expression and age variations on the relative performance of Laplacianfaces and Eigenfaces has been shown to be very significant and best parameter settings for enhanced performance have been proposed.</abstract><pub>IEEE</pub><doi>10.1109/INMIC.2009.5383116</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424448727
ispartof 2009 IEEE 13th International Multitopic Conference, 2009, p.1-5
issn
language eng
recordid cdi_ieee_primary_5383116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Eigenvalues and eigenfunctions
Embedded computing
Face detection
Face recognition
Laplace equations
Pattern recognition
Principal component analysis
Size measurement
Spatial databases
Testing
title Introducing set of internal parameters for Laplacian faces to enhance performance under varying conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Introducing%20set%20of%20internal%20parameters%20for%20Laplacian%20faces%20to%20enhance%20performance%20under%20varying%20conditions&rft.btitle=2009%20IEEE%2013th%20International%20Multitopic%20Conference&rft.au=Bhatti,%20Z.E.&rft.date=2009-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424448727&rft.isbn_list=9781424448722&rft_id=info:doi/10.1109/INMIC.2009.5383116&rft.eisbn=9781424448739&rft.eisbn_list=1424448735&rft_dat=%3Cieee_6IE%3E5383116%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bcb937c0e03ef10a47852a5098a95249337005c7dd30139e4ccf73a4eaf61d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5383116&rfr_iscdi=true