Loading…
FPGA-based embedded hand vein biometric authentication system
Biometric authentication provides a high security and reliable approach to be used in security access system. However, this authentication method has not been widely implemented in a resource-constrained embedded system. In this project, we investigate a method of personal authentication based on in...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Eng, P.C. Khalil-Hani, M. |
description | Biometric authentication provides a high security and reliable approach to be used in security access system. However, this authentication method has not been widely implemented in a resource-constrained embedded system. In this project, we investigate a method of personal authentication based on infrared vein pattern in the back of the hand, targeted for embedded system which is implemented in Altera Nios II FPGA prototyping system, running on Real Time Operating System (RTOS). The RTOS applied is Nios2-Linux. A biometric feature is extracted from the vein pattern image and then matched for personal authentication. The algorithm consists of four modules: image capturing, image pre-processing, feature extraction, and the authentication module. These image processing algorithms executed in an embedded system with a 50 MHz fixed point processor. Preliminary experiment on a database of 82 images of 15 candidates show promising result with the system reaching equal error rate of 5.5%. |
doi_str_mv | 10.1109/TENCON.2009.5396173 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5396173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5396173</ieee_id><sourcerecordid>5396173</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-740505aae1284925f51901f302d76695550e3f8fe74d1f1a6473926f4053dfab3</originalsourceid><addsrcrecordid>eNo9UM1qwkAY3P4IVZsn8JIXiP32P9-hBwlqC6I95C4b91vc0sSSpAXfvinazmUGhpmBYWzGYc454FO53Ba77VwA4FxLNNzKGzbhSiiltLL2lo0F15hJpeGOJWjzP8-I-39PiRGb_HYgSAT1wJKue4cBGiygGLPn1dt6kVWuI59SXZH3gzi6xqffFJu0iqea-jYeUvfVH6np48H18dSk3bnrqX5ko-A-OkquPGXlalkWL9lmt34tFpssIvSZVcOcdo64yBUKHTRH4EGC8NYY1FoDyZAHssrzwJ1RVqIwYYhJH1wlp2x2qY1EtP9sY-3a8_76ivwBQPZOHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FPGA-based embedded hand vein biometric authentication system</title><source>IEEE Xplore All Conference Series</source><creator>Eng, P.C. ; Khalil-Hani, M.</creator><creatorcontrib>Eng, P.C. ; Khalil-Hani, M.</creatorcontrib><description>Biometric authentication provides a high security and reliable approach to be used in security access system. However, this authentication method has not been widely implemented in a resource-constrained embedded system. In this project, we investigate a method of personal authentication based on infrared vein pattern in the back of the hand, targeted for embedded system which is implemented in Altera Nios II FPGA prototyping system, running on Real Time Operating System (RTOS). The RTOS applied is Nios2-Linux. A biometric feature is extracted from the vein pattern image and then matched for personal authentication. The algorithm consists of four modules: image capturing, image pre-processing, feature extraction, and the authentication module. These image processing algorithms executed in an embedded system with a 50 MHz fixed point processor. Preliminary experiment on a database of 82 images of 15 candidates show promising result with the system reaching equal error rate of 5.5%.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424445462</identifier><identifier>ISBN: 1424445469</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424445477</identifier><identifier>EISBN: 9781424445479</identifier><identifier>DOI: 10.1109/TENCON.2009.5396173</identifier><identifier>LCCN: 2009903904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; Biometric ; Biometrics ; Embedded system ; Feature extraction ; Field programmable gate arrays ; FPGA ; Hand Vein ; Nios2-linu ; Operating systems ; Prototypes ; Real time systems ; RTOS ; Security ; Veins</subject><ispartof>TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5396173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5396173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eng, P.C.</creatorcontrib><creatorcontrib>Khalil-Hani, M.</creatorcontrib><title>FPGA-based embedded hand vein biometric authentication system</title><title>TENCON 2009 - 2009 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>Biometric authentication provides a high security and reliable approach to be used in security access system. However, this authentication method has not been widely implemented in a resource-constrained embedded system. In this project, we investigate a method of personal authentication based on infrared vein pattern in the back of the hand, targeted for embedded system which is implemented in Altera Nios II FPGA prototyping system, running on Real Time Operating System (RTOS). The RTOS applied is Nios2-Linux. A biometric feature is extracted from the vein pattern image and then matched for personal authentication. The algorithm consists of four modules: image capturing, image pre-processing, feature extraction, and the authentication module. These image processing algorithms executed in an embedded system with a 50 MHz fixed point processor. Preliminary experiment on a database of 82 images of 15 candidates show promising result with the system reaching equal error rate of 5.5%.</description><subject>Authentication</subject><subject>Biometric</subject><subject>Biometrics</subject><subject>Embedded system</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Hand Vein</subject><subject>Nios2-linu</subject><subject>Operating systems</subject><subject>Prototypes</subject><subject>Real time systems</subject><subject>RTOS</subject><subject>Security</subject><subject>Veins</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424445462</isbn><isbn>1424445469</isbn><isbn>1424445477</isbn><isbn>9781424445479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UM1qwkAY3P4IVZsn8JIXiP32P9-hBwlqC6I95C4b91vc0sSSpAXfvinazmUGhpmBYWzGYc454FO53Ba77VwA4FxLNNzKGzbhSiiltLL2lo0F15hJpeGOJWjzP8-I-39PiRGb_HYgSAT1wJKue4cBGiygGLPn1dt6kVWuI59SXZH3gzi6xqffFJu0iqea-jYeUvfVH6np48H18dSk3bnrqX5ko-A-OkquPGXlalkWL9lmt34tFpssIvSZVcOcdo64yBUKHTRH4EGC8NYY1FoDyZAHssrzwJ1RVqIwYYhJH1wlp2x2qY1EtP9sY-3a8_76ivwBQPZOHQ</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Eng, P.C.</creator><creator>Khalil-Hani, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>FPGA-based embedded hand vein biometric authentication system</title><author>Eng, P.C. ; Khalil-Hani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-740505aae1284925f51901f302d76695550e3f8fe74d1f1a6473926f4053dfab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Authentication</topic><topic>Biometric</topic><topic>Biometrics</topic><topic>Embedded system</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Hand Vein</topic><topic>Nios2-linu</topic><topic>Operating systems</topic><topic>Prototypes</topic><topic>Real time systems</topic><topic>RTOS</topic><topic>Security</topic><topic>Veins</topic><toplevel>online_resources</toplevel><creatorcontrib>Eng, P.C.</creatorcontrib><creatorcontrib>Khalil-Hani, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eng, P.C.</au><au>Khalil-Hani, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FPGA-based embedded hand vein biometric authentication system</atitle><btitle>TENCON 2009 - 2009 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2009-11</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424445462</isbn><isbn>1424445469</isbn><eisbn>1424445477</eisbn><eisbn>9781424445479</eisbn><abstract>Biometric authentication provides a high security and reliable approach to be used in security access system. However, this authentication method has not been widely implemented in a resource-constrained embedded system. In this project, we investigate a method of personal authentication based on infrared vein pattern in the back of the hand, targeted for embedded system which is implemented in Altera Nios II FPGA prototyping system, running on Real Time Operating System (RTOS). The RTOS applied is Nios2-Linux. A biometric feature is extracted from the vein pattern image and then matched for personal authentication. The algorithm consists of four modules: image capturing, image pre-processing, feature extraction, and the authentication module. These image processing algorithms executed in an embedded system with a 50 MHz fixed point processor. Preliminary experiment on a database of 82 images of 15 candidates show promising result with the system reaching equal error rate of 5.5%.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2009.5396173</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-3442 |
ispartof | TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-5 |
issn | 2159-3442 2159-3450 |
language | eng |
recordid | cdi_ieee_primary_5396173 |
source | IEEE Xplore All Conference Series |
subjects | Authentication Biometric Biometrics Embedded system Feature extraction Field programmable gate arrays FPGA Hand Vein Nios2-linu Operating systems Prototypes Real time systems RTOS Security Veins |
title | FPGA-based embedded hand vein biometric authentication system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FPGA-based%20embedded%20hand%20vein%20biometric%20authentication%20system&rft.btitle=TENCON%202009%20-%202009%20IEEE%20Region%2010%20Conference&rft.au=Eng,%20P.C.&rft.date=2009-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424445462&rft.isbn_list=1424445469&rft_id=info:doi/10.1109/TENCON.2009.5396173&rft.eisbn=1424445477&rft.eisbn_list=9781424445479&rft_dat=%3Cieee_CHZPO%3E5396173%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-740505aae1284925f51901f302d76695550e3f8fe74d1f1a6473926f4053dfab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5396173&rfr_iscdi=true |