Loading…

Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor

We describe a residue number system (RNS) implementation of the 192-bit elliptic curve digital signature algorithm over GF(p). It uses a Tensilica Xtensa LX2.1 microprocessor core with hardware extensions to improve the performance of RNS operations. The low power and small area of the enhanced Xten...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhining Lim, Phillips, B.J., Liebelt, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Zhining Lim
Phillips, B.J.
Liebelt, M.
description We describe a residue number system (RNS) implementation of the 192-bit elliptic curve digital signature algorithm over GF(p). It uses a Tensilica Xtensa LX2.1 microprocessor core with hardware extensions to improve the performance of RNS operations. The low power and small area of the enhanced Xtensa LX2.1 core make it suitable for smart cards. This implementation is the first to use the RNS for elliptic curve cryptography on a sequential microprocessor. The RNS-enabled microprocessor performs a 192-bit point multiplication in approximately 2 million clock cycles, a performance that compares well to other minimally enhanced elliptic curve cryptography implementations.
doi_str_mv 10.1109/TENCON.2009.5396175
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5396175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5396175</ieee_id><sourcerecordid>5396175</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e8213f78ebac80464859bfba5f154493d3601067fa076fba40d09f9ee0f448763</originalsourceid><addsrcrecordid>eNo9kMtuwjAURN0HUgvlC9h42S5Cr-PrOF5WCGglBBv2yEluUld5yQ5I_H2pSjubkeZIZzGMzQTMhQDzul9uF7vtPAYwcyVNIrS6YWOBMSIq1PqWPcZCmUiigjs2NTr9Y0l8_88wHrHxj8OANIAPbBrCF1yiQIOJH1m1rGvXDy7n-dGfiBeucoOteXBVa4ejJ27rqvNu-Gx4dyLP16vn_oV3LbfcU3DFkXh7bLILCecwUMOptVlNBW9c7rvedzmF0PknNiptHWh67Qnbr5b7xXu02a0_Fm-byBkYIkpjIUudUmbzFDDBVJmszKwqhUI0spAJCEh0aUEnlx2hAFMaIigRU53ICZv9ah0RHXrvGuvPh-t_8htn7V7x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhining Lim ; Phillips, B.J. ; Liebelt, M.</creator><creatorcontrib>Zhining Lim ; Phillips, B.J. ; Liebelt, M.</creatorcontrib><description>We describe a residue number system (RNS) implementation of the 192-bit elliptic curve digital signature algorithm over GF(p). It uses a Tensilica Xtensa LX2.1 microprocessor core with hardware extensions to improve the performance of RNS operations. The low power and small area of the enhanced Xtensa LX2.1 core make it suitable for smart cards. This implementation is the first to use the RNS for elliptic curve cryptography on a sequential microprocessor. The RNS-enabled microprocessor performs a 192-bit point multiplication in approximately 2 million clock cycles, a performance that compares well to other minimally enhanced elliptic curve cryptography implementations.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424445462</identifier><identifier>ISBN: 1424445469</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424445477</identifier><identifier>EISBN: 9781424445479</identifier><identifier>DOI: 10.1109/TENCON.2009.5396175</identifier><identifier>LCCN: 2009903904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arithmetic ; Australia ; Clocks ; Digital signatures ; Elliptic curve cryptography ; Elliptic curve digital signature algorithm implementation ; Elliptic curves ; Hardware ; instruction set extension ; Microprocessors ; residue number system ; Signal processing algorithms ; smart card processor ; Smart cards ; Xtensa LX2.1 microprocessor</subject><ispartof>TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5396175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5396175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhining Lim</creatorcontrib><creatorcontrib>Phillips, B.J.</creatorcontrib><creatorcontrib>Liebelt, M.</creatorcontrib><title>Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor</title><title>TENCON 2009 - 2009 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>We describe a residue number system (RNS) implementation of the 192-bit elliptic curve digital signature algorithm over GF(p). It uses a Tensilica Xtensa LX2.1 microprocessor core with hardware extensions to improve the performance of RNS operations. The low power and small area of the enhanced Xtensa LX2.1 core make it suitable for smart cards. This implementation is the first to use the RNS for elliptic curve cryptography on a sequential microprocessor. The RNS-enabled microprocessor performs a 192-bit point multiplication in approximately 2 million clock cycles, a performance that compares well to other minimally enhanced elliptic curve cryptography implementations.</description><subject>Arithmetic</subject><subject>Australia</subject><subject>Clocks</subject><subject>Digital signatures</subject><subject>Elliptic curve cryptography</subject><subject>Elliptic curve digital signature algorithm implementation</subject><subject>Elliptic curves</subject><subject>Hardware</subject><subject>instruction set extension</subject><subject>Microprocessors</subject><subject>residue number system</subject><subject>Signal processing algorithms</subject><subject>smart card processor</subject><subject>Smart cards</subject><subject>Xtensa LX2.1 microprocessor</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424445462</isbn><isbn>1424445469</isbn><isbn>1424445477</isbn><isbn>9781424445479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtuwjAURN0HUgvlC9h42S5Cr-PrOF5WCGglBBv2yEluUld5yQ5I_H2pSjubkeZIZzGMzQTMhQDzul9uF7vtPAYwcyVNIrS6YWOBMSIq1PqWPcZCmUiigjs2NTr9Y0l8_88wHrHxj8OANIAPbBrCF1yiQIOJH1m1rGvXDy7n-dGfiBeucoOteXBVa4ejJ27rqvNu-Gx4dyLP16vn_oV3LbfcU3DFkXh7bLILCecwUMOptVlNBW9c7rvedzmF0PknNiptHWh67Qnbr5b7xXu02a0_Fm-byBkYIkpjIUudUmbzFDDBVJmszKwqhUI0spAJCEh0aUEnlx2hAFMaIigRU53ICZv9ah0RHXrvGuvPh-t_8htn7V7x</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Zhining Lim</creator><creator>Phillips, B.J.</creator><creator>Liebelt, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor</title><author>Zhining Lim ; Phillips, B.J. ; Liebelt, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e8213f78ebac80464859bfba5f154493d3601067fa076fba40d09f9ee0f448763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arithmetic</topic><topic>Australia</topic><topic>Clocks</topic><topic>Digital signatures</topic><topic>Elliptic curve cryptography</topic><topic>Elliptic curve digital signature algorithm implementation</topic><topic>Elliptic curves</topic><topic>Hardware</topic><topic>instruction set extension</topic><topic>Microprocessors</topic><topic>residue number system</topic><topic>Signal processing algorithms</topic><topic>smart card processor</topic><topic>Smart cards</topic><topic>Xtensa LX2.1 microprocessor</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhining Lim</creatorcontrib><creatorcontrib>Phillips, B.J.</creatorcontrib><creatorcontrib>Liebelt, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhining Lim</au><au>Phillips, B.J.</au><au>Liebelt, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor</atitle><btitle>TENCON 2009 - 2009 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2009-11</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424445462</isbn><isbn>1424445469</isbn><eisbn>1424445477</eisbn><eisbn>9781424445479</eisbn><abstract>We describe a residue number system (RNS) implementation of the 192-bit elliptic curve digital signature algorithm over GF(p). It uses a Tensilica Xtensa LX2.1 microprocessor core with hardware extensions to improve the performance of RNS operations. The low power and small area of the enhanced Xtensa LX2.1 core make it suitable for smart cards. This implementation is the first to use the RNS for elliptic curve cryptography on a sequential microprocessor. The RNS-enabled microprocessor performs a 192-bit point multiplication in approximately 2 million clock cycles, a performance that compares well to other minimally enhanced elliptic curve cryptography implementations.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2009.5396175</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-6
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_5396175
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arithmetic
Australia
Clocks
Digital signatures
Elliptic curve cryptography
Elliptic curve digital signature algorithm implementation
Elliptic curves
Hardware
instruction set extension
Microprocessors
residue number system
Signal processing algorithms
smart card processor
Smart cards
Xtensa LX2.1 microprocessor
title Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elliptic%20curve%20digital%20signature%20algorithm%20over%20GF(p)%20on%20a%20residue%20number%20system%20enabled%20microprocessor&rft.btitle=TENCON%202009%20-%202009%20IEEE%20Region%2010%20Conference&rft.au=Zhining%20Lim&rft.date=2009-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424445462&rft.isbn_list=1424445469&rft_id=info:doi/10.1109/TENCON.2009.5396175&rft.eisbn=1424445477&rft.eisbn_list=9781424445479&rft_dat=%3Cieee_6IE%3E5396175%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e8213f78ebac80464859bfba5f154493d3601067fa076fba40d09f9ee0f448763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5396175&rfr_iscdi=true