Loading…
Simultaneous 3D face pose and person-specific shape estimation from a single image using a holistic approach
This paper presents a new approach for the simultaneous estimation of the 3D pose and specific shape of a previously unseen face from a single image. The face pose is not limited to a frontal view. We describe a holistic approach based on a deformable 3D model and a learned statistical facial textur...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new approach for the simultaneous estimation of the 3D pose and specific shape of a previously unseen face from a single image. The face pose is not limited to a frontal view. We describe a holistic approach based on a deformable 3D model and a learned statistical facial texture model. Rather than obtaining a person-specific facial surface, the goal of this work is to compute person-specific 3D face shape in terms of a few control parameters that are used by many applications. The proposed holistic approach estimates the 3D pose parameters as well as the face shape control parameters by registering the warped texture to a statistical face texture, which is carried out by a stochastic and genetic optimizer. The proposed approach has several features that make it very attractive: (i) it uses a single grey-scale image, (ii) it is person-independent, (iii) it is featureless (no facial feature extraction is required), and (iv) its learning stage is easy. The proposed approach lends itself nicely to 3D face tracking and face gesture recognition in monocular videos. We describe extensive experiments that show the feasibility and robustness of the proposed approach. |
---|---|
ISSN: | 1550-5790 2642-9381 |
DOI: | 10.1109/WACV.2009.5403101 |