Loading…
Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition
Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53 |
---|---|
cites | |
container_end_page | 1561 |
container_issue | |
container_start_page | 1558 |
container_title | |
container_volume | |
creator | Yamaguchi, T. Fujio, M. Inoue, K. Pfurtscheller, G. |
description | Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm. |
doi_str_mv | 10.1109/ICICIC.2009.161 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5412503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5412503</ieee_id><sourcerecordid>5412503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</originalsourceid><addsrcrecordid>eNo1jEtLAzEUhSMiqLVrF27yB1rznEyWMn1YaFGsgruS5jGNtEnJZBYFf7zxdc_iHg7nfADcYjTGGMn7RfOtMUFIjnGFz8A1EpXktBa0PgfXmBHGOGf0_RIMu-4DlWOcMlFfgc-J7Xwb4MrmXTQwOriK6biL-9h6rfZwnVOvc5-KnfVBZx8DdDHBZ5WzTQG-WB3b4H_yMp5O53BdeGrfwUmffGgLL5f-4qBam05QBQOb_8UNuHClaYd_fwDeZtPX5nG0fJovmoflSGNa5dHWWaEtoYJJurWV4wYp5LDZMoZtySUnRmpBsWHFVa42xFVEKO2kMdhwOgB3v1xvrd0ckz-odNpwhglHlH4Bx5dgCQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</creator><creatorcontrib>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</creatorcontrib><description>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</description><identifier>ISBN: 142445543X</identifier><identifier>ISBN: 9781424455430</identifier><identifier>EISBN: 0769538738</identifier><identifier>EISBN: 1424455448</identifier><identifier>EISBN: 9781424455447</identifier><identifier>EISBN: 9780769538730</identifier><identifier>DOI: 10.1109/ICICIC.2009.161</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognition ; Computer errors ; Design methodology ; Electroencephalography ; Feature extraction ; Filtering ; Filters ; Image analysis ; Pattern recognition ; Signal analysis</subject><ispartof>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1558-1561</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5412503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5412503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Fujio, M.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><title>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</title><addtitle>ICICIC</addtitle><description>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</description><subject>Cognition</subject><subject>Computer errors</subject><subject>Design methodology</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Filters</subject><subject>Image analysis</subject><subject>Pattern recognition</subject><subject>Signal analysis</subject><isbn>142445543X</isbn><isbn>9781424455430</isbn><isbn>0769538738</isbn><isbn>1424455448</isbn><isbn>9781424455447</isbn><isbn>9780769538730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtLAzEUhSMiqLVrF27yB1rznEyWMn1YaFGsgruS5jGNtEnJZBYFf7zxdc_iHg7nfADcYjTGGMn7RfOtMUFIjnGFz8A1EpXktBa0PgfXmBHGOGf0_RIMu-4DlWOcMlFfgc-J7Xwb4MrmXTQwOriK6biL-9h6rfZwnVOvc5-KnfVBZx8DdDHBZ5WzTQG-WB3b4H_yMp5O53BdeGrfwUmffGgLL5f-4qBam05QBQOb_8UNuHClaYd_fwDeZtPX5nG0fJovmoflSGNa5dHWWaEtoYJJurWV4wYp5LDZMoZtySUnRmpBsWHFVa42xFVEKO2kMdhwOgB3v1xvrd0ckz-odNpwhglHlH4Bx5dgCQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Yamaguchi, T.</creator><creator>Fujio, M.</creator><creator>Inoue, K.</creator><creator>Pfurtscheller, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><author>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cognition</topic><topic>Computer errors</topic><topic>Design methodology</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Filters</topic><topic>Image analysis</topic><topic>Pattern recognition</topic><topic>Signal analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Fujio, M.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamaguchi, T.</au><au>Fujio, M.</au><au>Inoue, K.</au><au>Pfurtscheller, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</atitle><btitle>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</btitle><stitle>ICICIC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1558</spage><epage>1561</epage><pages>1558-1561</pages><isbn>142445543X</isbn><isbn>9781424455430</isbn><eisbn>0769538738</eisbn><eisbn>1424455448</eisbn><eisbn>9781424455447</eisbn><eisbn>9780769538730</eisbn><abstract>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICICIC.2009.161</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142445543X |
ispartof | 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1558-1561 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5412503 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cognition Computer errors Design methodology Electroencephalography Feature extraction Filtering Filters Image analysis Pattern recognition Signal analysis |
title | Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20Method%20of%20Morphological%20Structural%20Function%20for%20Pattern%20Recognition%20of%20EEG%20Signals%20During%20Motor%20Imagery%20and%20Cognition&rft.btitle=2009%20Fourth%20International%20Conference%20on%20Innovative%20Computing,%20Information%20and%20Control%20(ICICIC)&rft.au=Yamaguchi,%20T.&rft.date=2009-12&rft.spage=1558&rft.epage=1561&rft.pages=1558-1561&rft.isbn=142445543X&rft.isbn_list=9781424455430&rft_id=info:doi/10.1109/ICICIC.2009.161&rft.eisbn=0769538738&rft.eisbn_list=1424455448&rft.eisbn_list=9781424455447&rft.eisbn_list=9780769538730&rft_dat=%3Cieee_6IE%3E5412503%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5412503&rfr_iscdi=true |