Loading…

Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition

Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Yamaguchi, T., Fujio, M., Inoue, K., Pfurtscheller, G.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53
cites
container_end_page 1561
container_issue
container_start_page 1558
container_title
container_volume
creator Yamaguchi, T.
Fujio, M.
Inoue, K.
Pfurtscheller, G.
description Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.
doi_str_mv 10.1109/ICICIC.2009.161
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5412503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5412503</ieee_id><sourcerecordid>5412503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</originalsourceid><addsrcrecordid>eNo1jEtLAzEUhSMiqLVrF27yB1rznEyWMn1YaFGsgruS5jGNtEnJZBYFf7zxdc_iHg7nfADcYjTGGMn7RfOtMUFIjnGFz8A1EpXktBa0PgfXmBHGOGf0_RIMu-4DlWOcMlFfgc-J7Xwb4MrmXTQwOriK6biL-9h6rfZwnVOvc5-KnfVBZx8DdDHBZ5WzTQG-WB3b4H_yMp5O53BdeGrfwUmffGgLL5f-4qBam05QBQOb_8UNuHClaYd_fwDeZtPX5nG0fJovmoflSGNa5dHWWaEtoYJJurWV4wYp5LDZMoZtySUnRmpBsWHFVa42xFVEKO2kMdhwOgB3v1xvrd0ckz-odNpwhglHlH4Bx5dgCQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</creator><creatorcontrib>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</creatorcontrib><description>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</description><identifier>ISBN: 142445543X</identifier><identifier>ISBN: 9781424455430</identifier><identifier>EISBN: 0769538738</identifier><identifier>EISBN: 1424455448</identifier><identifier>EISBN: 9781424455447</identifier><identifier>EISBN: 9780769538730</identifier><identifier>DOI: 10.1109/ICICIC.2009.161</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognition ; Computer errors ; Design methodology ; Electroencephalography ; Feature extraction ; Filtering ; Filters ; Image analysis ; Pattern recognition ; Signal analysis</subject><ispartof>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1558-1561</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5412503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5412503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Fujio, M.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><title>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</title><addtitle>ICICIC</addtitle><description>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</description><subject>Cognition</subject><subject>Computer errors</subject><subject>Design methodology</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Filters</subject><subject>Image analysis</subject><subject>Pattern recognition</subject><subject>Signal analysis</subject><isbn>142445543X</isbn><isbn>9781424455430</isbn><isbn>0769538738</isbn><isbn>1424455448</isbn><isbn>9781424455447</isbn><isbn>9780769538730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtLAzEUhSMiqLVrF27yB1rznEyWMn1YaFGsgruS5jGNtEnJZBYFf7zxdc_iHg7nfADcYjTGGMn7RfOtMUFIjnGFz8A1EpXktBa0PgfXmBHGOGf0_RIMu-4DlWOcMlFfgc-J7Xwb4MrmXTQwOriK6biL-9h6rfZwnVOvc5-KnfVBZx8DdDHBZ5WzTQG-WB3b4H_yMp5O53BdeGrfwUmffGgLL5f-4qBam05QBQOb_8UNuHClaYd_fwDeZtPX5nG0fJovmoflSGNa5dHWWaEtoYJJurWV4wYp5LDZMoZtySUnRmpBsWHFVa42xFVEKO2kMdhwOgB3v1xvrd0ckz-odNpwhglHlH4Bx5dgCQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Yamaguchi, T.</creator><creator>Fujio, M.</creator><creator>Inoue, K.</creator><creator>Pfurtscheller, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</title><author>Yamaguchi, T. ; Fujio, M. ; Inoue, K. ; Pfurtscheller, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cognition</topic><topic>Computer errors</topic><topic>Design methodology</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Filters</topic><topic>Image analysis</topic><topic>Pattern recognition</topic><topic>Signal analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Fujio, M.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamaguchi, T.</au><au>Fujio, M.</au><au>Inoue, K.</au><au>Pfurtscheller, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition</atitle><btitle>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</btitle><stitle>ICICIC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1558</spage><epage>1561</epage><pages>1558-1561</pages><isbn>142445543X</isbn><isbn>9781424455430</isbn><eisbn>0769538738</eisbn><eisbn>1424455448</eisbn><eisbn>9781424455447</eisbn><eisbn>9780769538730</eisbn><abstract>Electroencephalograph (EEG) recordings during right and left hand motor imagery can be used to move a cursor to a target on a computer screen (such system is called BCI). Recently, we have proposed the detection method of error potential in order to add the fail safe function to BCI system. In this paper, feature extraction method based on morphological multi-resolution analysis is introduced to extract features concerned with motor imagery and cognition simultaneously from the EEG signals. Morphological filter is composed of nonlinear operation between signal and structural function and this multi-resolution analysis can be constructed by repeating this filtering to signal while changing structural function. This method is a kind of discrete wavelet analysis with non-linear characteristics and is effective to extract specific shapes. The structural function which decides the filter characteristic is designed to obtain optimal separation based on mutual information algorithm or spectrum dividing algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICICIC.2009.161</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142445543X
ispartof 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1558-1561
issn
language eng
recordid cdi_ieee_primary_5412503
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cognition
Computer errors
Design methodology
Electroencephalography
Feature extraction
Filtering
Filters
Image analysis
Pattern recognition
Signal analysis
title Design Method of Morphological Structural Function for Pattern Recognition of EEG Signals During Motor Imagery and Cognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20Method%20of%20Morphological%20Structural%20Function%20for%20Pattern%20Recognition%20of%20EEG%20Signals%20During%20Motor%20Imagery%20and%20Cognition&rft.btitle=2009%20Fourth%20International%20Conference%20on%20Innovative%20Computing,%20Information%20and%20Control%20(ICICIC)&rft.au=Yamaguchi,%20T.&rft.date=2009-12&rft.spage=1558&rft.epage=1561&rft.pages=1558-1561&rft.isbn=142445543X&rft.isbn_list=9781424455430&rft_id=info:doi/10.1109/ICICIC.2009.161&rft.eisbn=0769538738&rft.eisbn_list=1424455448&rft.eisbn_list=9781424455447&rft.eisbn_list=9780769538730&rft_dat=%3Cieee_6IE%3E5412503%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c136t-bfe7ce237493be6f5d0a0f1db441ee23952d9c731d452d6f8d2f627acf9dd1d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5412503&rfr_iscdi=true