Loading…

Decision-feedback equalization of pulse-position modulation on measured non-directed indoor infrared channels

We examine the performance of two decision-feedback equalizers (DFEs) for pulse-position modulation (PPM) on measured non-directed indoor infrared channels with intersymbol interference (ISI). PPM offers high average-power efficiency, but on ISI channels, unequalized PPM suffers severe performance p...

Full description

Saved in:
Bibliographic Details
Main Authors: Audeh, M.D., Kahn, J.M., Barry, J.R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examine the performance of two decision-feedback equalizers (DFEs) for pulse-position modulation (PPM) on measured non-directed indoor infrared channels with intersymbol interference (ISI). PPM offers high average-power efficiency, but on ISI channels, unequalized PPM suffers severe performance penalties. We have previously examined the performance of the maximum-likelihood sequence detector (MLSD), and found that it yields significant improvements. However the MLSD often requires such large complexity and delay that it may be impractical. We investigate suboptimal, reduced-complexity equalization techniques for PPM, providing a performance analysis of zero-forcing chip-rate and symbol-rate DFEs. Detailed performance results for 2-, 4-, 8-, and 16-PPM links at bit rates of 10 Mb/s and 30 Mb/s over 46 actual measured indoor infrared channels are presented for these two DFEs. Our results show that a symbol-rate DFE provides performance that closely approaches that of the optimal MLSD.
DOI:10.1109/ICC.1996.541402