Loading…
Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images
This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 840 |
container_issue | |
container_start_page | 837 |
container_title | |
container_volume | |
creator | Salas-Gonzalez, D. Gorriz, J.M. Ramirez, J. Alvarez, I. Lopez, M. Segovia, F. Gomez-Rio, M. |
description | This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task. |
doi_str_mv | 10.1109/ICIP.2009.5414369 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414369</ieee_id><sourcerecordid>5414369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013</originalsourceid><addsrcrecordid>eNpVkEtPwkAUhcdXYkV-gHEzO1fFed12ZkkaVBISSMA1mdI7MAqt6S0x-OttIhtXZ_El53w5jD1IMZJSuOdpMV2MlBBuBEYanbkLNnS5lUYZAxmAuGSJ0lamFoy7-sd0ds0SCUqlxlpxy-6IPoRQQmqZsPnyE79rJOKeeEDfHVvkoWl5t0NeRb-tG4rEm8DH-58dxgO2T9QDQk_IjxTrLV8uJsWKx4PfIt2zm-D3hMNzDtj7y2RVvKWz-eu0GM_SKHPoUmkrCWWowCswIQvCi-CqvNfyJrNis1FYKuUDQlZ650qwFaiN9jpXQetefcAe_3ojIq6_2n69Pa3P3-hfJvxS7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</creator><creatorcontrib>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</creatorcontrib><description>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414369</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Brain ; Classification ; Computer aided diagnosis ; Dementia ; Image databases ; Nuclear medicine ; Pixel ; Power system modeling ; Single photon emission computed tomography ; SPECT Brain Imaging ; Support vector machines</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.837-840</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Gorriz, J.M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Segovia, F.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Classification</subject><subject>Computer aided diagnosis</subject><subject>Dementia</subject><subject>Image databases</subject><subject>Nuclear medicine</subject><subject>Pixel</subject><subject>Power system modeling</subject><subject>Single photon emission computed tomography</subject><subject>SPECT Brain Imaging</subject><subject>Support vector machines</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtPwkAUhcdXYkV-gHEzO1fFed12ZkkaVBISSMA1mdI7MAqt6S0x-OttIhtXZ_El53w5jD1IMZJSuOdpMV2MlBBuBEYanbkLNnS5lUYZAxmAuGSJ0lamFoy7-sd0ds0SCUqlxlpxy-6IPoRQQmqZsPnyE79rJOKeeEDfHVvkoWl5t0NeRb-tG4rEm8DH-58dxgO2T9QDQk_IjxTrLV8uJsWKx4PfIt2zm-D3hMNzDtj7y2RVvKWz-eu0GM_SKHPoUmkrCWWowCswIQvCi-CqvNfyJrNis1FYKuUDQlZ650qwFaiN9jpXQetefcAe_3ojIq6_2n69Pa3P3-hfJvxS7g</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Salas-Gonzalez, D.</creator><creator>Gorriz, J.M.</creator><creator>Ramirez, J.</creator><creator>Alvarez, I.</creator><creator>Lopez, M.</creator><creator>Segovia, F.</creator><creator>Gomez-Rio, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><author>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Classification</topic><topic>Computer aided diagnosis</topic><topic>Dementia</topic><topic>Image databases</topic><topic>Nuclear medicine</topic><topic>Pixel</topic><topic>Power system modeling</topic><topic>Single photon emission computed tomography</topic><topic>SPECT Brain Imaging</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Gorriz, J.M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Segovia, F.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salas-Gonzalez, D.</au><au>Gorriz, J.M.</au><au>Ramirez, J.</au><au>Alvarez, I.</au><au>Lopez, M.</au><au>Segovia, F.</au><au>Gomez-Rio, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>837</spage><epage>840</epage><pages>837-840</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414369</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.837-840 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5414369 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Alzheimer's disease Brain Classification Computer aided diagnosis Dementia Image databases Nuclear medicine Pixel Power system modeling Single photon emission computed tomography SPECT Brain Imaging Support vector machines |
title | Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Skewness%20as%20feature%20for%20the%20diagnosis%20of%20Alzheimer's%20disease%20using%20SPECT%20images&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Salas-Gonzalez,%20D.&rft.date=2009-11&rft.spage=837&rft.epage=840&rft.pages=837-840&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414369&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&rft_dat=%3Cieee_6IE%3E5414369%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414369&rfr_iscdi=true |