Loading…

Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images

This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace...

Full description

Saved in:
Bibliographic Details
Main Authors: Salas-Gonzalez, D., Gorriz, J.M., Ramirez, J., Alvarez, I., Lopez, M., Segovia, F., Gomez-Rio, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 840
container_issue
container_start_page 837
container_title
container_volume
creator Salas-Gonzalez, D.
Gorriz, J.M.
Ramirez, J.
Alvarez, I.
Lopez, M.
Segovia, F.
Gomez-Rio, M.
description This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.
doi_str_mv 10.1109/ICIP.2009.5414369
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414369</ieee_id><sourcerecordid>5414369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013</originalsourceid><addsrcrecordid>eNpVkEtPwkAUhcdXYkV-gHEzO1fFed12ZkkaVBISSMA1mdI7MAqt6S0x-OttIhtXZ_El53w5jD1IMZJSuOdpMV2MlBBuBEYanbkLNnS5lUYZAxmAuGSJ0lamFoy7-sd0ds0SCUqlxlpxy-6IPoRQQmqZsPnyE79rJOKeeEDfHVvkoWl5t0NeRb-tG4rEm8DH-58dxgO2T9QDQk_IjxTrLV8uJsWKx4PfIt2zm-D3hMNzDtj7y2RVvKWz-eu0GM_SKHPoUmkrCWWowCswIQvCi-CqvNfyJrNis1FYKuUDQlZ650qwFaiN9jpXQetefcAe_3ojIq6_2n69Pa3P3-hfJvxS7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</creator><creatorcontrib>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</creatorcontrib><description>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414369</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Brain ; Classification ; Computer aided diagnosis ; Dementia ; Image databases ; Nuclear medicine ; Pixel ; Power system modeling ; Single photon emission computed tomography ; SPECT Brain Imaging ; Support vector machines</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.837-840</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Gorriz, J.M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Segovia, F.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Classification</subject><subject>Computer aided diagnosis</subject><subject>Dementia</subject><subject>Image databases</subject><subject>Nuclear medicine</subject><subject>Pixel</subject><subject>Power system modeling</subject><subject>Single photon emission computed tomography</subject><subject>SPECT Brain Imaging</subject><subject>Support vector machines</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtPwkAUhcdXYkV-gHEzO1fFed12ZkkaVBISSMA1mdI7MAqt6S0x-OttIhtXZ_El53w5jD1IMZJSuOdpMV2MlBBuBEYanbkLNnS5lUYZAxmAuGSJ0lamFoy7-sd0ds0SCUqlxlpxy-6IPoRQQmqZsPnyE79rJOKeeEDfHVvkoWl5t0NeRb-tG4rEm8DH-58dxgO2T9QDQk_IjxTrLV8uJsWKx4PfIt2zm-D3hMNzDtj7y2RVvKWz-eu0GM_SKHPoUmkrCWWowCswIQvCi-CqvNfyJrNis1FYKuUDQlZ650qwFaiN9jpXQetefcAe_3ojIq6_2n69Pa3P3-hfJvxS7g</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Salas-Gonzalez, D.</creator><creator>Gorriz, J.M.</creator><creator>Ramirez, J.</creator><creator>Alvarez, I.</creator><creator>Lopez, M.</creator><creator>Segovia, F.</creator><creator>Gomez-Rio, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</title><author>Salas-Gonzalez, D. ; Gorriz, J.M. ; Ramirez, J. ; Alvarez, I. ; Lopez, M. ; Segovia, F. ; Gomez-Rio, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Classification</topic><topic>Computer aided diagnosis</topic><topic>Dementia</topic><topic>Image databases</topic><topic>Nuclear medicine</topic><topic>Pixel</topic><topic>Power system modeling</topic><topic>Single photon emission computed tomography</topic><topic>SPECT Brain Imaging</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Gorriz, J.M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Segovia, F.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salas-Gonzalez, D.</au><au>Gorriz, J.M.</au><au>Ramirez, J.</au><au>Alvarez, I.</au><au>Lopez, M.</au><au>Segovia, F.</au><au>Gomez-Rio, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>837</spage><epage>840</epage><pages>837-840</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the calculation of the skewness to each m-by-m sliding block of the transaxial slices of the SPECT brain images. We replace the center pixel in the m-by-m block by the skewness value and build a new 3-D brain image which will be used for classification purposes. After that, we select the voxels which present a Welch's t-statistic between both classes, Normal and Alzheimer images, higher (or lower) than a given threshold. The mean, standard deviation, skewness and kurtosis are calculated for selected voxels and they are chosen as feature vectors for three different classifiers: support vector machines with linear kernel, classification trees and multivariate normal model. The proposed methodology reaches an accuracy higher than 98% in the classification task.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414369</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.837-840
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5414369
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Alzheimer's disease
Brain
Classification
Computer aided diagnosis
Dementia
Image databases
Nuclear medicine
Pixel
Power system modeling
Single photon emission computed tomography
SPECT Brain Imaging
Support vector machines
title Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Skewness%20as%20feature%20for%20the%20diagnosis%20of%20Alzheimer's%20disease%20using%20SPECT%20images&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Salas-Gonzalez,%20D.&rft.date=2009-11&rft.spage=837&rft.epage=840&rft.pages=837-840&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414369&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&rft_dat=%3Cieee_6IE%3E5414369%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-18d15bfd5a254f6f0a0f9d7002a4680cc2eb22afe56ba99b58d52c3a372f33013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414369&rfr_iscdi=true