Loading…
Template phenology for vegetation models
To assist the representation of phenology in vegetation models we created several templates of phenology-driver relations by characterizing the annual phase differences between phenology and two phenology drivers. We did this using the results of a cross spectral analysis of MODIS EVI with radiation...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | IV-1045 |
container_issue | |
container_start_page | IV-1042 |
container_title | |
container_volume | 4 |
creator | Bradley, Andrew Gerard, France Barbier, Nicolas Weedon, Graham Huntingford, Chris Zelazowski, Przemyslaw Anderson, Liana de Aragao, Luiz Kaduk, Jorg |
description | To assist the representation of phenology in vegetation models we created several templates of phenology-driver relations by characterizing the annual phase differences between phenology and two phenology drivers. We did this using the results of a cross spectral analysis of MODIS EVI with radiation (CPTEC) and with precipitation (TRMM). Four phase ranges were identified for phenology-radiation and three phase ranges for phenology-precipitation. These ranges were classified and mapped together into 12 zones of our study area where particular phase relationships coincided. Around ~25% area was in phase with radiation, with varying phase ranges of precipitation, and ~16 % was in phase with precipitation with varying phase ranges of radiation. For each zone we conceptualized the phenology-driver relationships with phase lagged curves. The phase timing of these plots matched well with average time series plots from the same zones, but more work is needed on the representation of amplitude. |
doi_str_mv | 10.1109/IGARSS.2009.5417570 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5417570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5417570</ieee_id><sourcerecordid>5417570</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8a30572a05405f7b1d39e0efb29b342a114c0cfbe804d1664f82b383f2e0b33</originalsourceid><addsrcrecordid>eNpFj09rwkAUxLd_hKr1E3jJsZekb_e9zWaPItUKQqHxLrvmrU1JTDCh4LdvoIHOZWB-MMwIsZSQSAn2dbddfeZ5ogBsokkabeBOzCQpIkSr7b2YKqkxNgD48A8IHkeQWptOxGwoyKyEIXoSi677hkGkISUzFS8HrtvK9Ry1X3xpquZ8i0JzjX74zL3ry-YS1U3BVfcsJsFVHS9Gn4t883ZYv8f7j-1uvdrH5TCwjzOHoI1yoAl0MF4WaBk4eGU9knJS0glOwXMGVMg0pZApjxkGxeAR52L511oy87G9lrW73o7jefwFnFlGig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Template phenology for vegetation models</title><source>IEEE Xplore All Conference Series</source><creator>Bradley, Andrew ; Gerard, France ; Barbier, Nicolas ; Weedon, Graham ; Huntingford, Chris ; Zelazowski, Przemyslaw ; Anderson, Liana ; de Aragao, Luiz ; Kaduk, Jorg</creator><creatorcontrib>Bradley, Andrew ; Gerard, France ; Barbier, Nicolas ; Weedon, Graham ; Huntingford, Chris ; Zelazowski, Przemyslaw ; Anderson, Liana ; de Aragao, Luiz ; Kaduk, Jorg</creatorcontrib><description>To assist the representation of phenology in vegetation models we created several templates of phenology-driver relations by characterizing the annual phase differences between phenology and two phenology drivers. We did this using the results of a cross spectral analysis of MODIS EVI with radiation (CPTEC) and with precipitation (TRMM). Four phase ranges were identified for phenology-radiation and three phase ranges for phenology-precipitation. These ranges were classified and mapped together into 12 zones of our study area where particular phase relationships coincided. Around ~25% area was in phase with radiation, with varying phase ranges of precipitation, and ~16 % was in phase with precipitation with varying phase ranges of radiation. For each zone we conceptualized the phenology-driver relationships with phase lagged curves. The phase timing of these plots matched well with average time series plots from the same zones, but more work is needed on the representation of amplitude.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424433940</identifier><identifier>ISBN: 9781424433940</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424433959</identifier><identifier>EISBN: 9781424433957</identifier><identifier>DOI: 10.1109/IGARSS.2009.5417570</identifier><identifier>LCCN: 2008910215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Biological system modeling ; Discrete event simulation ; Fourier transform ; modeling ; MODIS ; Productivity ; Remote monitoring ; Remote sensing ; Satellite applications ; Spectral analysis ; Timing ; Vegetation mapping</subject><ispartof>2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.4, p.IV-1042-IV-1045</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5417570$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5417570$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bradley, Andrew</creatorcontrib><creatorcontrib>Gerard, France</creatorcontrib><creatorcontrib>Barbier, Nicolas</creatorcontrib><creatorcontrib>Weedon, Graham</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Zelazowski, Przemyslaw</creatorcontrib><creatorcontrib>Anderson, Liana</creatorcontrib><creatorcontrib>de Aragao, Luiz</creatorcontrib><creatorcontrib>Kaduk, Jorg</creatorcontrib><title>Template phenology for vegetation models</title><title>2009 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>To assist the representation of phenology in vegetation models we created several templates of phenology-driver relations by characterizing the annual phase differences between phenology and two phenology drivers. We did this using the results of a cross spectral analysis of MODIS EVI with radiation (CPTEC) and with precipitation (TRMM). Four phase ranges were identified for phenology-radiation and three phase ranges for phenology-precipitation. These ranges were classified and mapped together into 12 zones of our study area where particular phase relationships coincided. Around ~25% area was in phase with radiation, with varying phase ranges of precipitation, and ~16 % was in phase with precipitation with varying phase ranges of radiation. For each zone we conceptualized the phenology-driver relationships with phase lagged curves. The phase timing of these plots matched well with average time series plots from the same zones, but more work is needed on the representation of amplitude.</description><subject>Atmospheric modeling</subject><subject>Biological system modeling</subject><subject>Discrete event simulation</subject><subject>Fourier transform</subject><subject>modeling</subject><subject>MODIS</subject><subject>Productivity</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Satellite applications</subject><subject>Spectral analysis</subject><subject>Timing</subject><subject>Vegetation mapping</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424433940</isbn><isbn>9781424433940</isbn><isbn>1424433959</isbn><isbn>9781424433957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj09rwkAUxLd_hKr1E3jJsZekb_e9zWaPItUKQqHxLrvmrU1JTDCh4LdvoIHOZWB-MMwIsZSQSAn2dbddfeZ5ogBsokkabeBOzCQpIkSr7b2YKqkxNgD48A8IHkeQWptOxGwoyKyEIXoSi677hkGkISUzFS8HrtvK9Ry1X3xpquZ8i0JzjX74zL3ry-YS1U3BVfcsJsFVHS9Gn4t883ZYv8f7j-1uvdrH5TCwjzOHoI1yoAl0MF4WaBk4eGU9knJS0glOwXMGVMg0pZApjxkGxeAR52L511oy87G9lrW73o7jefwFnFlGig</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Bradley, Andrew</creator><creator>Gerard, France</creator><creator>Barbier, Nicolas</creator><creator>Weedon, Graham</creator><creator>Huntingford, Chris</creator><creator>Zelazowski, Przemyslaw</creator><creator>Anderson, Liana</creator><creator>de Aragao, Luiz</creator><creator>Kaduk, Jorg</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>Template phenology for vegetation models</title><author>Bradley, Andrew ; Gerard, France ; Barbier, Nicolas ; Weedon, Graham ; Huntingford, Chris ; Zelazowski, Przemyslaw ; Anderson, Liana ; de Aragao, Luiz ; Kaduk, Jorg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8a30572a05405f7b1d39e0efb29b342a114c0cfbe804d1664f82b383f2e0b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric modeling</topic><topic>Biological system modeling</topic><topic>Discrete event simulation</topic><topic>Fourier transform</topic><topic>modeling</topic><topic>MODIS</topic><topic>Productivity</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Satellite applications</topic><topic>Spectral analysis</topic><topic>Timing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Bradley, Andrew</creatorcontrib><creatorcontrib>Gerard, France</creatorcontrib><creatorcontrib>Barbier, Nicolas</creatorcontrib><creatorcontrib>Weedon, Graham</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Zelazowski, Przemyslaw</creatorcontrib><creatorcontrib>Anderson, Liana</creatorcontrib><creatorcontrib>de Aragao, Luiz</creatorcontrib><creatorcontrib>Kaduk, Jorg</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bradley, Andrew</au><au>Gerard, France</au><au>Barbier, Nicolas</au><au>Weedon, Graham</au><au>Huntingford, Chris</au><au>Zelazowski, Przemyslaw</au><au>Anderson, Liana</au><au>de Aragao, Luiz</au><au>Kaduk, Jorg</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Template phenology for vegetation models</atitle><btitle>2009 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2009-07</date><risdate>2009</risdate><volume>4</volume><spage>IV-1042</spage><epage>IV-1045</epage><pages>IV-1042-IV-1045</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424433940</isbn><isbn>9781424433940</isbn><eisbn>1424433959</eisbn><eisbn>9781424433957</eisbn><abstract>To assist the representation of phenology in vegetation models we created several templates of phenology-driver relations by characterizing the annual phase differences between phenology and two phenology drivers. We did this using the results of a cross spectral analysis of MODIS EVI with radiation (CPTEC) and with precipitation (TRMM). Four phase ranges were identified for phenology-radiation and three phase ranges for phenology-precipitation. These ranges were classified and mapped together into 12 zones of our study area where particular phase relationships coincided. Around ~25% area was in phase with radiation, with varying phase ranges of precipitation, and ~16 % was in phase with precipitation with varying phase ranges of radiation. For each zone we conceptualized the phenology-driver relationships with phase lagged curves. The phase timing of these plots matched well with average time series plots from the same zones, but more work is needed on the representation of amplitude.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2009.5417570</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.4, p.IV-1042-IV-1045 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_5417570 |
source | IEEE Xplore All Conference Series |
subjects | Atmospheric modeling Biological system modeling Discrete event simulation Fourier transform modeling MODIS Productivity Remote monitoring Remote sensing Satellite applications Spectral analysis Timing Vegetation mapping |
title | Template phenology for vegetation models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Template%20phenology%20for%20vegetation%20models&rft.btitle=2009%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Bradley,%20Andrew&rft.date=2009-07&rft.volume=4&rft.spage=IV-1042&rft.epage=IV-1045&rft.pages=IV-1042-IV-1045&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424433940&rft.isbn_list=9781424433940&rft_id=info:doi/10.1109/IGARSS.2009.5417570&rft.eisbn=1424433959&rft.eisbn_list=9781424433957&rft_dat=%3Cieee_CHZPO%3E5417570%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8a30572a05405f7b1d39e0efb29b342a114c0cfbe804d1664f82b383f2e0b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5417570&rfr_iscdi=true |