Loading…

Nonlinear mixture analysis for hyperspectral imagery

Nonlinear mixture analysis for hyperspectral imagery is investigated in this paper. A simple but effective nonlinear mixture model is adopted, where the multiplication of each pair of endmembers results in another ¿endmember¿, representing nonlinear scattering effect during pixel construction proces...

Full description

Saved in:
Bibliographic Details
Main Authors: Raksuntorn, N., Qian Du
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page III-832
container_issue
container_start_page III-829
container_title
container_volume 3
creator Raksuntorn, N.
Qian Du
description Nonlinear mixture analysis for hyperspectral imagery is investigated in this paper. A simple but effective nonlinear mixture model is adopted, where the multiplication of each pair of endmembers results in another ¿endmember¿, representing nonlinear scattering effect during pixel construction process. The analysis is followed by original linear demixing process. Due to the larger number of nonlinear terms being added, the resulting abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. We take advantage of the developed endmember variable linear mixture model (EVLMM) to search the actual endmember set for each pixel, which yields more accurate abundance estimation.
doi_str_mv 10.1109/IGARSS.2009.5417895
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5417895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5417895</ieee_id><sourcerecordid>5417895</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2f348b50fc354e6506ac9a32f589ad10e9f8f5c331121d1099a9a4ef64e636193</originalsourceid><addsrcrecordid>eNpFkM1qwzAQhNWfQJM0T5CLX8DuSivJ3mMIbRoILTS5B9WVWhXHMZIL9dtXEEP3Mux8ywwsY0sOBedAD9vN6m2_LwQAFUrysiJ1xWZcCikRSdE1mwquMC8B8OYfSLgdgSbSEzZLARVxSNYdW8T4DWmkAi3LKZMv57bxrTUhO_nf_ifYzLSmGaKPmTuH7GvobIidrftgmsyfzKcNwz2bONNEuxh1zg5Pj4f1c7573WzXq13uCfpcOJTVuwJXo5JWp0JTk0HhVEXmg4MlVzlVI3IueNqJDBlpnU7HqDnhnC0vsd5ae-xCag_DcfwE_gFObEu2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear mixture analysis for hyperspectral imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raksuntorn, N. ; Qian Du</creator><creatorcontrib>Raksuntorn, N. ; Qian Du</creatorcontrib><description>Nonlinear mixture analysis for hyperspectral imagery is investigated in this paper. A simple but effective nonlinear mixture model is adopted, where the multiplication of each pair of endmembers results in another ¿endmember¿, representing nonlinear scattering effect during pixel construction process. The analysis is followed by original linear demixing process. Due to the larger number of nonlinear terms being added, the resulting abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. We take advantage of the developed endmember variable linear mixture model (EVLMM) to search the actual endmember set for each pixel, which yields more accurate abundance estimation.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424433940</identifier><identifier>ISBN: 9781424433940</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424433959</identifier><identifier>EISBN: 9781424433957</identifier><identifier>DOI: 10.1109/IGARSS.2009.5417895</identifier><identifier>LCCN: 2008910215</identifier><language>eng</language><publisher>IEEE</publisher><subject>hyperspectral imagery ; Hyperspectral imaging ; Image analysis ; Image reconstruction ; Image retrieval ; Information retrieval ; Minerals ; nonlinear spectral mixture analysis ; Scattering ; Soil ; Spectral analysis ; Yield estimation</subject><ispartof>2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-829-III-832</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5417895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5417895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raksuntorn, N.</creatorcontrib><creatorcontrib>Qian Du</creatorcontrib><title>Nonlinear mixture analysis for hyperspectral imagery</title><title>2009 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Nonlinear mixture analysis for hyperspectral imagery is investigated in this paper. A simple but effective nonlinear mixture model is adopted, where the multiplication of each pair of endmembers results in another ¿endmember¿, representing nonlinear scattering effect during pixel construction process. The analysis is followed by original linear demixing process. Due to the larger number of nonlinear terms being added, the resulting abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. We take advantage of the developed endmember variable linear mixture model (EVLMM) to search the actual endmember set for each pixel, which yields more accurate abundance estimation.</description><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Minerals</subject><subject>nonlinear spectral mixture analysis</subject><subject>Scattering</subject><subject>Soil</subject><subject>Spectral analysis</subject><subject>Yield estimation</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424433940</isbn><isbn>9781424433940</isbn><isbn>1424433959</isbn><isbn>9781424433957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1qwzAQhNWfQJM0T5CLX8DuSivJ3mMIbRoILTS5B9WVWhXHMZIL9dtXEEP3Mux8ywwsY0sOBedAD9vN6m2_LwQAFUrysiJ1xWZcCikRSdE1mwquMC8B8OYfSLgdgSbSEzZLARVxSNYdW8T4DWmkAi3LKZMv57bxrTUhO_nf_ifYzLSmGaKPmTuH7GvobIidrftgmsyfzKcNwz2bONNEuxh1zg5Pj4f1c7573WzXq13uCfpcOJTVuwJXo5JWp0JTk0HhVEXmg4MlVzlVI3IueNqJDBlpnU7HqDnhnC0vsd5ae-xCag_DcfwE_gFObEu2</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Raksuntorn, N.</creator><creator>Qian Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>Nonlinear mixture analysis for hyperspectral imagery</title><author>Raksuntorn, N. ; Qian Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2f348b50fc354e6506ac9a32f589ad10e9f8f5c331121d1099a9a4ef64e636193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Minerals</topic><topic>nonlinear spectral mixture analysis</topic><topic>Scattering</topic><topic>Soil</topic><topic>Spectral analysis</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Raksuntorn, N.</creatorcontrib><creatorcontrib>Qian Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raksuntorn, N.</au><au>Qian Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear mixture analysis for hyperspectral imagery</atitle><btitle>2009 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><spage>III-829</spage><epage>III-832</epage><pages>III-829-III-832</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424433940</isbn><isbn>9781424433940</isbn><eisbn>1424433959</eisbn><eisbn>9781424433957</eisbn><abstract>Nonlinear mixture analysis for hyperspectral imagery is investigated in this paper. A simple but effective nonlinear mixture model is adopted, where the multiplication of each pair of endmembers results in another ¿endmember¿, representing nonlinear scattering effect during pixel construction process. The analysis is followed by original linear demixing process. Due to the larger number of nonlinear terms being added, the resulting abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. We take advantage of the developed endmember variable linear mixture model (EVLMM) to search the actual endmember set for each pixel, which yields more accurate abundance estimation.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2009.5417895</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-829-III-832
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_5417895
source IEEE Electronic Library (IEL) Conference Proceedings
subjects hyperspectral imagery
Hyperspectral imaging
Image analysis
Image reconstruction
Image retrieval
Information retrieval
Minerals
nonlinear spectral mixture analysis
Scattering
Soil
Spectral analysis
Yield estimation
title Nonlinear mixture analysis for hyperspectral imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20mixture%20analysis%20for%20hyperspectral%20imagery&rft.btitle=2009%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Raksuntorn,%20N.&rft.date=2009-07&rft.volume=3&rft.spage=III-829&rft.epage=III-832&rft.pages=III-829-III-832&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424433940&rft.isbn_list=9781424433940&rft_id=info:doi/10.1109/IGARSS.2009.5417895&rft.eisbn=1424433959&rft.eisbn_list=9781424433957&rft_dat=%3Cieee_6IE%3E5417895%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2f348b50fc354e6506ac9a32f589ad10e9f8f5c331121d1099a9a4ef64e636193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5417895&rfr_iscdi=true