Loading…

Ground-Bouncing-Noise-Aware Combinational MTCMOS Circuits

Ground bouncing noise produced during the SLEEP to ACTIVE mode transitions is an important challenge in standard multithreshold CMOS (MTCMOS) circuits. The effectiveness of different noise-aware combinational MTCMOS circuit techniques to deal with the ground-bouncing-noise phenomenon is evaluated in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2010-08, Vol.57 (8), p.2053-2065
Main Authors: Hailong Jiao, Kursun, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground bouncing noise produced during the SLEEP to ACTIVE mode transitions is an important challenge in standard multithreshold CMOS (MTCMOS) circuits. The effectiveness of different noise-aware combinational MTCMOS circuit techniques to deal with the ground-bouncing-noise phenomenon is evaluated in this paper. An intermediate relaxation mode is investigated to gradually dump the charge stored on the virtual lines to the real ground distribution network during the SLEEP to ACTIVE mode transitions. The dependence of ground bouncing noise on the sleep transistor size and temperature is characterized with different power-gating structures. The peak amplitude of ground bouncing noise is reduced by up to 76.62% with the noise-aware techniques without sacrificing the savings in leakage power consumption as compared with standard MTCMOS circuits in a 90-nm CMOS technology.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2010.2041505