Loading…
Head pose estimation based on nonlinear interpolative mapping
The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 94 |
container_issue | |
container_start_page | 89 |
container_title | |
container_volume | |
creator | Hwei-Jen Lin Chen-Wei Chang I-Chun Pai |
description | The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy. |
doi_str_mv | 10.1109/JCPC.2009.5420207 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5420207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5420207</ieee_id><sourcerecordid>5420207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763</originalsourceid><addsrcrecordid>eNpVkE9LxDAQxSOyoK79AOIlX6A1fzvJwYMU3VUW9KDnJW2mEummoSmC396qe3Eu8x7zePwYQq44qzhn9uapeWkqwZittBJMMDghhQXDlVBKC2Hq038e7Ipc_MStVFbYM1Lk_MGWWY6yZufkdovO0zRmpJjncHBzGCNtXUZPFxHHOISIbqIhzjilcVgCn0gPLqUQ3y_JqndDxuK41-Tt4f612Za7581jc7crAwc9l4Ae67brOw6cawAppOmd5lZ72XrutZP8F1EacEZLwbwHo1znWtUJqOWaXP_1BkTcp2nhnL72xw_Ib9UTS-Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Head pose estimation based on nonlinear interpolative mapping</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</creator><creatorcontrib>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</creatorcontrib><description>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</description><identifier>ISBN: 9781424452279</identifier><identifier>ISBN: 1424452279</identifier><identifier>EISBN: 9781424452286</identifier><identifier>EISBN: 1424452287</identifier><identifier>DOI: 10.1109/JCPC.2009.5420207</identifier><identifier>LCCN: 2009934929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Access control ; Face detection ; Face recognition ; Fingerprint recognition ; head pose estimation ; Image recognition ; Isomap ; Linear discriminant analysis ; Magnetic heads ; nonlinear interpolative mapping ; Radial Basis Function (RBF) ; Security ; Support vector machines ; Surveillance</subject><ispartof>2009 Joint Conferences on Pervasive Computing (JCPC), 2009, p.89-94</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5420207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5420207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwei-Jen Lin</creatorcontrib><creatorcontrib>Chen-Wei Chang</creatorcontrib><creatorcontrib>I-Chun Pai</creatorcontrib><title>Head pose estimation based on nonlinear interpolative mapping</title><title>2009 Joint Conferences on Pervasive Computing (JCPC)</title><addtitle>JCPC</addtitle><description>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</description><subject>Access control</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Fingerprint recognition</subject><subject>head pose estimation</subject><subject>Image recognition</subject><subject>Isomap</subject><subject>Linear discriminant analysis</subject><subject>Magnetic heads</subject><subject>nonlinear interpolative mapping</subject><subject>Radial Basis Function (RBF)</subject><subject>Security</subject><subject>Support vector machines</subject><subject>Surveillance</subject><isbn>9781424452279</isbn><isbn>1424452279</isbn><isbn>9781424452286</isbn><isbn>1424452287</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE9LxDAQxSOyoK79AOIlX6A1fzvJwYMU3VUW9KDnJW2mEummoSmC396qe3Eu8x7zePwYQq44qzhn9uapeWkqwZittBJMMDghhQXDlVBKC2Hq038e7Ipc_MStVFbYM1Lk_MGWWY6yZufkdovO0zRmpJjncHBzGCNtXUZPFxHHOISIbqIhzjilcVgCn0gPLqUQ3y_JqndDxuK41-Tt4f612Za7581jc7crAwc9l4Ae67brOw6cawAppOmd5lZ72XrutZP8F1EacEZLwbwHo1znWtUJqOWaXP_1BkTcp2nhnL72xw_Ib9UTS-Q</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hwei-Jen Lin</creator><creator>Chen-Wei Chang</creator><creator>I-Chun Pai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Head pose estimation based on nonlinear interpolative mapping</title><author>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Access control</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Fingerprint recognition</topic><topic>head pose estimation</topic><topic>Image recognition</topic><topic>Isomap</topic><topic>Linear discriminant analysis</topic><topic>Magnetic heads</topic><topic>nonlinear interpolative mapping</topic><topic>Radial Basis Function (RBF)</topic><topic>Security</topic><topic>Support vector machines</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwei-Jen Lin</creatorcontrib><creatorcontrib>Chen-Wei Chang</creatorcontrib><creatorcontrib>I-Chun Pai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwei-Jen Lin</au><au>Chen-Wei Chang</au><au>I-Chun Pai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Head pose estimation based on nonlinear interpolative mapping</atitle><btitle>2009 Joint Conferences on Pervasive Computing (JCPC)</btitle><stitle>JCPC</stitle><date>2009-12</date><risdate>2009</risdate><spage>89</spage><epage>94</epage><pages>89-94</pages><isbn>9781424452279</isbn><isbn>1424452279</isbn><eisbn>9781424452286</eisbn><eisbn>1424452287</eisbn><abstract>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</abstract><pub>IEEE</pub><doi>10.1109/JCPC.2009.5420207</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424452279 |
ispartof | 2009 Joint Conferences on Pervasive Computing (JCPC), 2009, p.89-94 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5420207 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Access control Face detection Face recognition Fingerprint recognition head pose estimation Image recognition Isomap Linear discriminant analysis Magnetic heads nonlinear interpolative mapping Radial Basis Function (RBF) Security Support vector machines Surveillance |
title | Head pose estimation based on nonlinear interpolative mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Head%20pose%20estimation%20based%20on%20nonlinear%20interpolative%20mapping&rft.btitle=2009%20Joint%20Conferences%20on%20Pervasive%20Computing%20(JCPC)&rft.au=Hwei-Jen%20Lin&rft.date=2009-12&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.isbn=9781424452279&rft.isbn_list=1424452279&rft_id=info:doi/10.1109/JCPC.2009.5420207&rft.eisbn=9781424452286&rft.eisbn_list=1424452287&rft_dat=%3Cieee_6IE%3E5420207%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5420207&rfr_iscdi=true |