Loading…

Head pose estimation based on nonlinear interpolative mapping

The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Hwei-Jen Lin, Chen-Wei Chang, I-Chun Pai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 94
container_issue
container_start_page 89
container_title
container_volume
creator Hwei-Jen Lin
Chen-Wei Chang
I-Chun Pai
description The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.
doi_str_mv 10.1109/JCPC.2009.5420207
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5420207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5420207</ieee_id><sourcerecordid>5420207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763</originalsourceid><addsrcrecordid>eNpVkE9LxDAQxSOyoK79AOIlX6A1fzvJwYMU3VUW9KDnJW2mEummoSmC396qe3Eu8x7zePwYQq44qzhn9uapeWkqwZittBJMMDghhQXDlVBKC2Hq038e7Ipc_MStVFbYM1Lk_MGWWY6yZufkdovO0zRmpJjncHBzGCNtXUZPFxHHOISIbqIhzjilcVgCn0gPLqUQ3y_JqndDxuK41-Tt4f612Za7581jc7crAwc9l4Ae67brOw6cawAppOmd5lZ72XrutZP8F1EacEZLwbwHo1znWtUJqOWaXP_1BkTcp2nhnL72xw_Ib9UTS-Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Head pose estimation based on nonlinear interpolative mapping</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</creator><creatorcontrib>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</creatorcontrib><description>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</description><identifier>ISBN: 9781424452279</identifier><identifier>ISBN: 1424452279</identifier><identifier>EISBN: 9781424452286</identifier><identifier>EISBN: 1424452287</identifier><identifier>DOI: 10.1109/JCPC.2009.5420207</identifier><identifier>LCCN: 2009934929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Access control ; Face detection ; Face recognition ; Fingerprint recognition ; head pose estimation ; Image recognition ; Isomap ; Linear discriminant analysis ; Magnetic heads ; nonlinear interpolative mapping ; Radial Basis Function (RBF) ; Security ; Support vector machines ; Surveillance</subject><ispartof>2009 Joint Conferences on Pervasive Computing (JCPC), 2009, p.89-94</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5420207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5420207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwei-Jen Lin</creatorcontrib><creatorcontrib>Chen-Wei Chang</creatorcontrib><creatorcontrib>I-Chun Pai</creatorcontrib><title>Head pose estimation based on nonlinear interpolative mapping</title><title>2009 Joint Conferences on Pervasive Computing (JCPC)</title><addtitle>JCPC</addtitle><description>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</description><subject>Access control</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Fingerprint recognition</subject><subject>head pose estimation</subject><subject>Image recognition</subject><subject>Isomap</subject><subject>Linear discriminant analysis</subject><subject>Magnetic heads</subject><subject>nonlinear interpolative mapping</subject><subject>Radial Basis Function (RBF)</subject><subject>Security</subject><subject>Support vector machines</subject><subject>Surveillance</subject><isbn>9781424452279</isbn><isbn>1424452279</isbn><isbn>9781424452286</isbn><isbn>1424452287</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE9LxDAQxSOyoK79AOIlX6A1fzvJwYMU3VUW9KDnJW2mEummoSmC396qe3Eu8x7zePwYQq44qzhn9uapeWkqwZittBJMMDghhQXDlVBKC2Hq038e7Ipc_MStVFbYM1Lk_MGWWY6yZufkdovO0zRmpJjncHBzGCNtXUZPFxHHOISIbqIhzjilcVgCn0gPLqUQ3y_JqndDxuK41-Tt4f612Za7581jc7crAwc9l4Ae67brOw6cawAppOmd5lZ72XrutZP8F1EacEZLwbwHo1znWtUJqOWaXP_1BkTcp2nhnL72xw_Ib9UTS-Q</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hwei-Jen Lin</creator><creator>Chen-Wei Chang</creator><creator>I-Chun Pai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Head pose estimation based on nonlinear interpolative mapping</title><author>Hwei-Jen Lin ; Chen-Wei Chang ; I-Chun Pai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Access control</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Fingerprint recognition</topic><topic>head pose estimation</topic><topic>Image recognition</topic><topic>Isomap</topic><topic>Linear discriminant analysis</topic><topic>Magnetic heads</topic><topic>nonlinear interpolative mapping</topic><topic>Radial Basis Function (RBF)</topic><topic>Security</topic><topic>Support vector machines</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwei-Jen Lin</creatorcontrib><creatorcontrib>Chen-Wei Chang</creatorcontrib><creatorcontrib>I-Chun Pai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwei-Jen Lin</au><au>Chen-Wei Chang</au><au>I-Chun Pai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Head pose estimation based on nonlinear interpolative mapping</atitle><btitle>2009 Joint Conferences on Pervasive Computing (JCPC)</btitle><stitle>JCPC</stitle><date>2009-12</date><risdate>2009</risdate><spage>89</spage><epage>94</epage><pages>89-94</pages><isbn>9781424452279</isbn><isbn>1424452279</isbn><eisbn>9781424452286</eisbn><eisbn>1424452287</eisbn><abstract>The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.</abstract><pub>IEEE</pub><doi>10.1109/JCPC.2009.5420207</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424452279
ispartof 2009 Joint Conferences on Pervasive Computing (JCPC), 2009, p.89-94
issn
language eng
recordid cdi_ieee_primary_5420207
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Access control
Face detection
Face recognition
Fingerprint recognition
head pose estimation
Image recognition
Isomap
Linear discriminant analysis
Magnetic heads
nonlinear interpolative mapping
Radial Basis Function (RBF)
Security
Support vector machines
Surveillance
title Head pose estimation based on nonlinear interpolative mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Head%20pose%20estimation%20based%20on%20nonlinear%20interpolative%20mapping&rft.btitle=2009%20Joint%20Conferences%20on%20Pervasive%20Computing%20(JCPC)&rft.au=Hwei-Jen%20Lin&rft.date=2009-12&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.isbn=9781424452279&rft.isbn_list=1424452279&rft_id=info:doi/10.1109/JCPC.2009.5420207&rft.eisbn=9781424452286&rft.eisbn_list=1424452287&rft_dat=%3Cieee_6IE%3E5420207%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7ede6bcfc17115773238fa5195d3bd1d5a3109934387a85320dd784acab4c2763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5420207&rfr_iscdi=true