Loading…
JSEG-based image segmentation in computer vision for agricultural mobile robot navigation
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algor...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 245 |
container_issue | |
container_start_page | 240 |
container_title | |
container_volume | |
creator | Lulio, L.C. Tronco, M.L. Porto, A.J.V. |
description | This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. |
doi_str_mv | 10.1109/CIRA.2009.5423201 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5423201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5423201</ieee_id><sourcerecordid>5423201</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3</originalsourceid><addsrcrecordid>eNpFUMtqwzAQVCmBNmk-oPSiH7CrlSVLOoaQJimBQh-HnoJkr4yKH0G2A_37Jm2gcxlmmF2YIeQeWArAzONy-7pIOWMmlYJnnMEVmYLgQgjNTHb9L7SckOk5aJgUADdk3vdf7AQhM6bMLfl8flutE2d7LGlobIW0x6rBdrBD6FoaWlp0zWEcMNJj6M-W7yK1VQzFWA9jtDVtOhdqpLFz3UBbewzV7-0dmXhb9zi_8Ix8PK3el5tk97LeLhe7JICSQwKolHMShfU5Exa10aJQJleeOZCl5U5KcBlKl4NQjGvPpTdCI5SowJXZjDz8_Q2IuD_EU4v4vb_skv0AlOFVVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</creator><creatorcontrib>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</creatorcontrib><description>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</description><identifier>ISBN: 1424448085</identifier><identifier>ISBN: 9781424448081</identifier><identifier>EISBN: 1424448093</identifier><identifier>EISBN: 9781424448098</identifier><identifier>DOI: 10.1109/CIRA.2009.5423201</identifier><identifier>LCCN: 2009905411</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Computer vision ; Image processing ; Image segmentation ; Machine vision ; Mobile robots ; Motion planning ; Navigation ; Pattern recognition</subject><ispartof>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.240-245</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5423201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5423201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lulio, L.C.</creatorcontrib><creatorcontrib>Tronco, M.L.</creatorcontrib><creatorcontrib>Porto, A.J.V.</creatorcontrib><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><title>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</title><addtitle>CIRA</addtitle><description>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine vision</subject><subject>Mobile robots</subject><subject>Motion planning</subject><subject>Navigation</subject><subject>Pattern recognition</subject><isbn>1424448085</isbn><isbn>9781424448081</isbn><isbn>1424448093</isbn><isbn>9781424448098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUMtqwzAQVCmBNmk-oPSiH7CrlSVLOoaQJimBQh-HnoJkr4yKH0G2A_37Jm2gcxlmmF2YIeQeWArAzONy-7pIOWMmlYJnnMEVmYLgQgjNTHb9L7SckOk5aJgUADdk3vdf7AQhM6bMLfl8flutE2d7LGlobIW0x6rBdrBD6FoaWlp0zWEcMNJj6M-W7yK1VQzFWA9jtDVtOhdqpLFz3UBbewzV7-0dmXhb9zi_8Ix8PK3el5tk97LeLhe7JICSQwKolHMShfU5Exa10aJQJleeOZCl5U5KcBlKl4NQjGvPpTdCI5SowJXZjDz8_Q2IuD_EU4v4vb_skv0AlOFVVQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Lulio, L.C.</creator><creator>Tronco, M.L.</creator><creator>Porto, A.J.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><author>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine vision</topic><topic>Mobile robots</topic><topic>Motion planning</topic><topic>Navigation</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Lulio, L.C.</creatorcontrib><creatorcontrib>Tronco, M.L.</creatorcontrib><creatorcontrib>Porto, A.J.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lulio, L.C.</au><au>Tronco, M.L.</au><au>Porto, A.J.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</atitle><btitle>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</btitle><stitle>CIRA</stitle><date>2009-12</date><risdate>2009</risdate><spage>240</spage><epage>245</epage><pages>240-245</pages><isbn>1424448085</isbn><isbn>9781424448081</isbn><eisbn>1424448093</eisbn><eisbn>9781424448098</eisbn><abstract>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</abstract><pub>IEEE</pub><doi>10.1109/CIRA.2009.5423201</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424448085 |
ispartof | 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.240-245 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5423201 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Computer networks Computer vision Image processing Image segmentation Machine vision Mobile robots Motion planning Navigation Pattern recognition |
title | JSEG-based image segmentation in computer vision for agricultural mobile robot navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=JSEG-based%20image%20segmentation%20in%20computer%20vision%20for%20agricultural%20mobile%20robot%20navigation&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Computational%20Intelligence%20in%20Robotics%20and%20Automation%20-%20(CIRA)&rft.au=Lulio,%20L.C.&rft.date=2009-12&rft.spage=240&rft.epage=245&rft.pages=240-245&rft.isbn=1424448085&rft.isbn_list=9781424448081&rft_id=info:doi/10.1109/CIRA.2009.5423201&rft.eisbn=1424448093&rft.eisbn_list=9781424448098&rft_dat=%3Cieee_6IE%3E5423201%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5423201&rfr_iscdi=true |