Loading…

JSEG-based image segmentation in computer vision for agricultural mobile robot navigation

This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algor...

Full description

Saved in:
Bibliographic Details
Main Authors: Lulio, L.C., Tronco, M.L., Porto, A.J.V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 245
container_issue
container_start_page 240
container_title
container_volume
creator Lulio, L.C.
Tronco, M.L.
Porto, A.J.V.
description This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
doi_str_mv 10.1109/CIRA.2009.5423201
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5423201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5423201</ieee_id><sourcerecordid>5423201</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3</originalsourceid><addsrcrecordid>eNpFUMtqwzAQVCmBNmk-oPSiH7CrlSVLOoaQJimBQh-HnoJkr4yKH0G2A_37Jm2gcxlmmF2YIeQeWArAzONy-7pIOWMmlYJnnMEVmYLgQgjNTHb9L7SckOk5aJgUADdk3vdf7AQhM6bMLfl8flutE2d7LGlobIW0x6rBdrBD6FoaWlp0zWEcMNJj6M-W7yK1VQzFWA9jtDVtOhdqpLFz3UBbewzV7-0dmXhb9zi_8Ix8PK3el5tk97LeLhe7JICSQwKolHMShfU5Exa10aJQJleeOZCl5U5KcBlKl4NQjGvPpTdCI5SowJXZjDz8_Q2IuD_EU4v4vb_skv0AlOFVVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</creator><creatorcontrib>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</creatorcontrib><description>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</description><identifier>ISBN: 1424448085</identifier><identifier>ISBN: 9781424448081</identifier><identifier>EISBN: 1424448093</identifier><identifier>EISBN: 9781424448098</identifier><identifier>DOI: 10.1109/CIRA.2009.5423201</identifier><identifier>LCCN: 2009905411</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Computer vision ; Image processing ; Image segmentation ; Machine vision ; Mobile robots ; Motion planning ; Navigation ; Pattern recognition</subject><ispartof>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.240-245</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5423201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5423201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lulio, L.C.</creatorcontrib><creatorcontrib>Tronco, M.L.</creatorcontrib><creatorcontrib>Porto, A.J.V.</creatorcontrib><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><title>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</title><addtitle>CIRA</addtitle><description>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine vision</subject><subject>Mobile robots</subject><subject>Motion planning</subject><subject>Navigation</subject><subject>Pattern recognition</subject><isbn>1424448085</isbn><isbn>9781424448081</isbn><isbn>1424448093</isbn><isbn>9781424448098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUMtqwzAQVCmBNmk-oPSiH7CrlSVLOoaQJimBQh-HnoJkr4yKH0G2A_37Jm2gcxlmmF2YIeQeWArAzONy-7pIOWMmlYJnnMEVmYLgQgjNTHb9L7SckOk5aJgUADdk3vdf7AQhM6bMLfl8flutE2d7LGlobIW0x6rBdrBD6FoaWlp0zWEcMNJj6M-W7yK1VQzFWA9jtDVtOhdqpLFz3UBbewzV7-0dmXhb9zi_8Ix8PK3el5tk97LeLhe7JICSQwKolHMShfU5Exa10aJQJleeOZCl5U5KcBlKl4NQjGvPpTdCI5SowJXZjDz8_Q2IuD_EU4v4vb_skv0AlOFVVQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Lulio, L.C.</creator><creator>Tronco, M.L.</creator><creator>Porto, A.J.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</title><author>Lulio, L.C. ; Tronco, M.L. ; Porto, A.J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine vision</topic><topic>Mobile robots</topic><topic>Motion planning</topic><topic>Navigation</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Lulio, L.C.</creatorcontrib><creatorcontrib>Tronco, M.L.</creatorcontrib><creatorcontrib>Porto, A.J.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lulio, L.C.</au><au>Tronco, M.L.</au><au>Porto, A.J.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>JSEG-based image segmentation in computer vision for agricultural mobile robot navigation</atitle><btitle>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</btitle><stitle>CIRA</stitle><date>2009-12</date><risdate>2009</risdate><spage>240</spage><epage>245</epage><pages>240-245</pages><isbn>1424448085</isbn><isbn>9781424448081</isbn><eisbn>1424448093</eisbn><eisbn>9781424448098</eisbn><abstract>This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.</abstract><pub>IEEE</pub><doi>10.1109/CIRA.2009.5423201</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424448085
ispartof 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.240-245
issn
language eng
recordid cdi_ieee_primary_5423201
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computer networks
Computer vision
Image processing
Image segmentation
Machine vision
Mobile robots
Motion planning
Navigation
Pattern recognition
title JSEG-based image segmentation in computer vision for agricultural mobile robot navigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=JSEG-based%20image%20segmentation%20in%20computer%20vision%20for%20agricultural%20mobile%20robot%20navigation&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Computational%20Intelligence%20in%20Robotics%20and%20Automation%20-%20(CIRA)&rft.au=Lulio,%20L.C.&rft.date=2009-12&rft.spage=240&rft.epage=245&rft.pages=240-245&rft.isbn=1424448085&rft.isbn_list=9781424448081&rft_id=info:doi/10.1109/CIRA.2009.5423201&rft.eisbn=1424448093&rft.eisbn_list=9781424448098&rft_dat=%3Cieee_6IE%3E5423201%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1e77bb5e4af604ae8984c7967f0b15da2b551b3e5b6147028f25f948e1de71bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5423201&rfr_iscdi=true