Loading…
Optimal Computing Budget Allocation for constrained optimization
In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 589 |
container_issue | |
container_start_page | 584 |
container_title | |
container_volume | |
creator | Pujowidianto, N.A. Loo Hay Lee Chun-Hung Chen Chee Meng Yap |
description | In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection. |
doi_str_mv | 10.1109/WSC.2009.5429660 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5429660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5429660</ieee_id><sourcerecordid>5429660</sourcerecordid><originalsourceid>FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3</originalsourceid><addsrcrecordid>eNpVkDtrwzAUhdVHoG6avdDFf8DuvVeSJW1NTV8QyNBAxyDLUlBxbGM7Q_vr-8rS6Qwf5-NwGLtGyBHB3L69ljkBmFwKMkUBJ2xhlEZBQkilSJyyBKXUmeAgz_4xgHOWgDaYKcWLGUu0ygopUNMFuxzHdwDUEilhd-t-invbpGW37w9TbHfp_aHe-SldNk3n7BS7Ng3dkLquHafBxtbXaffTiZ-_8IrNgm1GvzjmnG0eHzblc7ZaP72Uy1UWC4IskDGKKl45CkjkURqng1XcaFtr0J7QBR2gAuedrR1aLmyBjpRwqlI1n7ObP2303m_74Xvz8LE9_sK_ADbuUKs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Computing Budget Allocation for constrained optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</creator><creatorcontrib>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</creatorcontrib><description>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424457700</identifier><identifier>ISBN: 142445770X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424457724</identifier><identifier>EISBN: 1424457718</identifier><identifier>EISBN: 9781424457717</identifier><identifier>EISBN: 1424457726</identifier><identifier>DOI: 10.1109/WSC.2009.5429660</identifier><identifier>LCCN: 87-654182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer industry ; Constraint optimization ; Design engineering ; Hospitals ; Operations research ; Stochastic processes ; Stochastic systems ; Systems engineering and theory</subject><ispartof>Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.584-589</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5429660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5429660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pujowidianto, N.A.</creatorcontrib><creatorcontrib>Loo Hay Lee</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><creatorcontrib>Chee Meng Yap</creatorcontrib><title>Optimal Computing Budget Allocation for constrained optimization</title><title>Proceedings of the 2009 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer industry</subject><subject>Constraint optimization</subject><subject>Design engineering</subject><subject>Hospitals</subject><subject>Operations research</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Systems engineering and theory</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424457700</isbn><isbn>142445770X</isbn><isbn>9781424457724</isbn><isbn>1424457718</isbn><isbn>9781424457717</isbn><isbn>1424457726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkDtrwzAUhdVHoG6avdDFf8DuvVeSJW1NTV8QyNBAxyDLUlBxbGM7Q_vr-8rS6Qwf5-NwGLtGyBHB3L69ljkBmFwKMkUBJ2xhlEZBQkilSJyyBKXUmeAgz_4xgHOWgDaYKcWLGUu0ygopUNMFuxzHdwDUEilhd-t-invbpGW37w9TbHfp_aHe-SldNk3n7BS7Ng3dkLquHafBxtbXaffTiZ-_8IrNgm1GvzjmnG0eHzblc7ZaP72Uy1UWC4IskDGKKl45CkjkURqng1XcaFtr0J7QBR2gAuedrR1aLmyBjpRwqlI1n7ObP2303m_74Xvz8LE9_sK_ADbuUKs</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Pujowidianto, N.A.</creator><creator>Loo Hay Lee</creator><creator>Chun-Hung Chen</creator><creator>Chee Meng Yap</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Optimal Computing Budget Allocation for constrained optimization</title><author>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer industry</topic><topic>Constraint optimization</topic><topic>Design engineering</topic><topic>Hospitals</topic><topic>Operations research</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pujowidianto, N.A.</creatorcontrib><creatorcontrib>Loo Hay Lee</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><creatorcontrib>Chee Meng Yap</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pujowidianto, N.A.</au><au>Loo Hay Lee</au><au>Chun-Hung Chen</au><au>Chee Meng Yap</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Computing Budget Allocation for constrained optimization</atitle><btitle>Proceedings of the 2009 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2009-12</date><risdate>2009</risdate><spage>584</spage><epage>589</epage><pages>584-589</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424457700</isbn><isbn>142445770X</isbn><eisbn>9781424457724</eisbn><eisbn>1424457718</eisbn><eisbn>9781424457717</eisbn><eisbn>1424457726</eisbn><abstract>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2009.5429660</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.584-589 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5429660 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Computational modeling Computer industry Constraint optimization Design engineering Hospitals Operations research Stochastic processes Stochastic systems Systems engineering and theory |
title | Optimal Computing Budget Allocation for constrained optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Computing%20Budget%20Allocation%20for%20constrained%20optimization&rft.btitle=Proceedings%20of%20the%202009%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Pujowidianto,%20N.A.&rft.date=2009-12&rft.spage=584&rft.epage=589&rft.pages=584-589&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424457700&rft.isbn_list=142445770X&rft_id=info:doi/10.1109/WSC.2009.5429660&rft.eisbn=9781424457724&rft.eisbn_list=1424457718&rft.eisbn_list=9781424457717&rft.eisbn_list=1424457726&rft_dat=%3Cieee_6IE%3E5429660%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5429660&rfr_iscdi=true |