Loading…

Optimal Computing Budget Allocation for constrained optimization

In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are th...

Full description

Saved in:
Bibliographic Details
Main Authors: Pujowidianto, N.A., Loo Hay Lee, Chun-Hung Chen, Chee Meng Yap
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 589
container_issue
container_start_page 584
container_title
container_volume
creator Pujowidianto, N.A.
Loo Hay Lee
Chun-Hung Chen
Chee Meng Yap
description In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.
doi_str_mv 10.1109/WSC.2009.5429660
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5429660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5429660</ieee_id><sourcerecordid>5429660</sourcerecordid><originalsourceid>FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3</originalsourceid><addsrcrecordid>eNpVkDtrwzAUhdVHoG6avdDFf8DuvVeSJW1NTV8QyNBAxyDLUlBxbGM7Q_vr-8rS6Qwf5-NwGLtGyBHB3L69ljkBmFwKMkUBJ2xhlEZBQkilSJyyBKXUmeAgz_4xgHOWgDaYKcWLGUu0ygopUNMFuxzHdwDUEilhd-t-invbpGW37w9TbHfp_aHe-SldNk3n7BS7Ng3dkLquHafBxtbXaffTiZ-_8IrNgm1GvzjmnG0eHzblc7ZaP72Uy1UWC4IskDGKKl45CkjkURqng1XcaFtr0J7QBR2gAuedrR1aLmyBjpRwqlI1n7ObP2303m_74Xvz8LE9_sK_ADbuUKs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Computing Budget Allocation for constrained optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</creator><creatorcontrib>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</creatorcontrib><description>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424457700</identifier><identifier>ISBN: 142445770X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424457724</identifier><identifier>EISBN: 1424457718</identifier><identifier>EISBN: 9781424457717</identifier><identifier>EISBN: 1424457726</identifier><identifier>DOI: 10.1109/WSC.2009.5429660</identifier><identifier>LCCN: 87-654182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer industry ; Constraint optimization ; Design engineering ; Hospitals ; Operations research ; Stochastic processes ; Stochastic systems ; Systems engineering and theory</subject><ispartof>Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.584-589</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5429660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5429660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pujowidianto, N.A.</creatorcontrib><creatorcontrib>Loo Hay Lee</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><creatorcontrib>Chee Meng Yap</creatorcontrib><title>Optimal Computing Budget Allocation for constrained optimization</title><title>Proceedings of the 2009 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer industry</subject><subject>Constraint optimization</subject><subject>Design engineering</subject><subject>Hospitals</subject><subject>Operations research</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Systems engineering and theory</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424457700</isbn><isbn>142445770X</isbn><isbn>9781424457724</isbn><isbn>1424457718</isbn><isbn>9781424457717</isbn><isbn>1424457726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkDtrwzAUhdVHoG6avdDFf8DuvVeSJW1NTV8QyNBAxyDLUlBxbGM7Q_vr-8rS6Qwf5-NwGLtGyBHB3L69ljkBmFwKMkUBJ2xhlEZBQkilSJyyBKXUmeAgz_4xgHOWgDaYKcWLGUu0ygopUNMFuxzHdwDUEilhd-t-invbpGW37w9TbHfp_aHe-SldNk3n7BS7Ng3dkLquHafBxtbXaffTiZ-_8IrNgm1GvzjmnG0eHzblc7ZaP72Uy1UWC4IskDGKKl45CkjkURqng1XcaFtr0J7QBR2gAuedrR1aLmyBjpRwqlI1n7ObP2303m_74Xvz8LE9_sK_ADbuUKs</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Pujowidianto, N.A.</creator><creator>Loo Hay Lee</creator><creator>Chun-Hung Chen</creator><creator>Chee Meng Yap</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Optimal Computing Budget Allocation for constrained optimization</title><author>Pujowidianto, N.A. ; Loo Hay Lee ; Chun-Hung Chen ; Chee Meng Yap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer industry</topic><topic>Constraint optimization</topic><topic>Design engineering</topic><topic>Hospitals</topic><topic>Operations research</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pujowidianto, N.A.</creatorcontrib><creatorcontrib>Loo Hay Lee</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><creatorcontrib>Chee Meng Yap</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pujowidianto, N.A.</au><au>Loo Hay Lee</au><au>Chun-Hung Chen</au><au>Chee Meng Yap</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Computing Budget Allocation for constrained optimization</atitle><btitle>Proceedings of the 2009 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2009-12</date><risdate>2009</risdate><spage>584</spage><epage>589</epage><pages>584-589</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424457700</isbn><isbn>142445770X</isbn><eisbn>9781424457724</eisbn><eisbn>1424457718</eisbn><eisbn>9781424457717</eisbn><eisbn>1424457726</eisbn><abstract>In this paper, we consider the problem of selecting the best design from a discrete number of alternatives in the presence of a stochastic constraint via simulation experiments. The best design is the design with smallest mean of main objective among the feasible designs. The feasible designs are the designs of which constraint measure is below the constraint limit. The Optimal Computing Budget Allocation (OCBA) framework is used to tackle the problem. In this framework, we aim at maximizing the probability of correct selection given a computing budget by controlling the number of simulation replications. An asymptotically optimal allocation rule is derived. A comparison with Equal Allocation (EA) in the numerical experiments shows that the proposed allocation rule gains higher probability of correct selection.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2009.5429660</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.584-589
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_5429660
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Computational modeling
Computer industry
Constraint optimization
Design engineering
Hospitals
Operations research
Stochastic processes
Stochastic systems
Systems engineering and theory
title Optimal Computing Budget Allocation for constrained optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Computing%20Budget%20Allocation%20for%20constrained%20optimization&rft.btitle=Proceedings%20of%20the%202009%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Pujowidianto,%20N.A.&rft.date=2009-12&rft.spage=584&rft.epage=589&rft.pages=584-589&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424457700&rft.isbn_list=142445770X&rft_id=info:doi/10.1109/WSC.2009.5429660&rft.eisbn=9781424457724&rft.eisbn_list=1424457718&rft.eisbn_list=9781424457717&rft.eisbn_list=1424457726&rft_dat=%3Cieee_6IE%3E5429660%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i620-f29972b3bc2f122e159c8fa7398ad808e21cf8f0b0cecadc1a34a61c274c7b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5429660&rfr_iscdi=true