Loading…
A single-transistor silicon synapse
We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor termina...
Saved in:
Published in: | IEEE transactions on electron devices 1996-11, Vol.43 (11), p.1972-1980 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613 |
container_end_page | 1980 |
container_issue | 11 |
container_start_page | 1972 |
container_title | IEEE transactions on electron devices |
container_volume | 43 |
creator | Diorio, C. Hasler, P. Minch, A. Mead, C.A. |
description | We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor terminal voltages, the synapse can implement a learning function. We have derived a memory-update rule from the physics of the tunneling and injection processes, and have investigated synapse learning in a prototype array. Unlike conventional EEPROM devices, the synapse allows simultaneous memory reading and writing. Synapse transistor arrays can therefore compute both the array output, and local memory updates, in parallel. The synapse is small, and typically is operated at subthreshold current levels; it will permit the development of dense, low-power silicon learning systems. |
doi_str_mv | 10.1109/16.543035 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_543035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>543035</ieee_id><sourcerecordid>29044268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAgCtbVg1dPC4LgoWvSJNPkuCx-wYIXPYc0nUil29ZM97D_3koXr56GmXkYhpexa8FXQnD7IGClleRSn7BMaF3mFhScsoxzYXIrjTxnF0RfUwtKFRm7XS-p6T5bzMfkO2po7NM0aZvQd0s6dH4gvGRn0beEV8e6YB9Pj--bl3z79vy6WW_zIJUcc-sjYlnGWBSFFaXHKohYSRVULIPmJZha1z5aZUBXYKIoEKBWOppa1RyEXLC7-e6Q-u890uh2DQVsW99hvydXWD79DOZ_aGC6x2GC9zMMqSdKGN2Qmp1PBye4-83LCXBzXpO9mW2DiH_uuPwBOyNkAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28606106</pqid></control><display><type>article</type><title>A single-transistor silicon synapse</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Diorio, C. ; Hasler, P. ; Minch, A. ; Mead, C.A.</creator><creatorcontrib>Diorio, C. ; Hasler, P. ; Minch, A. ; Mead, C.A.</creatorcontrib><description>We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor terminal voltages, the synapse can implement a learning function. We have derived a memory-update rule from the physics of the tunneling and injection processes, and have investigated synapse learning in a prototype array. Unlike conventional EEPROM devices, the synapse allows simultaneous memory reading and writing. Synapse transistor arrays can therefore compute both the array output, and local memory updates, in parallel. The synapse is small, and typically is operated at subthreshold current levels; it will permit the development of dense, low-power silicon learning systems.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.543035</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>EPROM ; MOSFETs ; Nonvolatile memory ; Physics ; Prototypes ; Read-write memory ; Secondary generated hot electron injection ; Silicon ; Tunneling ; Voltage</subject><ispartof>IEEE transactions on electron devices, 1996-11, Vol.43 (11), p.1972-1980</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613</citedby><cites>FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/543035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Diorio, C.</creatorcontrib><creatorcontrib>Hasler, P.</creatorcontrib><creatorcontrib>Minch, A.</creatorcontrib><creatorcontrib>Mead, C.A.</creatorcontrib><title>A single-transistor silicon synapse</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor terminal voltages, the synapse can implement a learning function. We have derived a memory-update rule from the physics of the tunneling and injection processes, and have investigated synapse learning in a prototype array. Unlike conventional EEPROM devices, the synapse allows simultaneous memory reading and writing. Synapse transistor arrays can therefore compute both the array output, and local memory updates, in parallel. The synapse is small, and typically is operated at subthreshold current levels; it will permit the development of dense, low-power silicon learning systems.</description><subject>EPROM</subject><subject>MOSFETs</subject><subject>Nonvolatile memory</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Read-write memory</subject><subject>Secondary generated hot electron injection</subject><subject>Silicon</subject><subject>Tunneling</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LxDAQBuAgCtbVg1dPC4LgoWvSJNPkuCx-wYIXPYc0nUil29ZM97D_3koXr56GmXkYhpexa8FXQnD7IGClleRSn7BMaF3mFhScsoxzYXIrjTxnF0RfUwtKFRm7XS-p6T5bzMfkO2po7NM0aZvQd0s6dH4gvGRn0beEV8e6YB9Pj--bl3z79vy6WW_zIJUcc-sjYlnGWBSFFaXHKohYSRVULIPmJZha1z5aZUBXYKIoEKBWOppa1RyEXLC7-e6Q-u890uh2DQVsW99hvydXWD79DOZ_aGC6x2GC9zMMqSdKGN2Qmp1PBye4-83LCXBzXpO9mW2DiH_uuPwBOyNkAQ</recordid><startdate>199611</startdate><enddate>199611</enddate><creator>Diorio, C.</creator><creator>Hasler, P.</creator><creator>Minch, A.</creator><creator>Mead, C.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>199611</creationdate><title>A single-transistor silicon synapse</title><author>Diorio, C. ; Hasler, P. ; Minch, A. ; Mead, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>EPROM</topic><topic>MOSFETs</topic><topic>Nonvolatile memory</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Read-write memory</topic><topic>Secondary generated hot electron injection</topic><topic>Silicon</topic><topic>Tunneling</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diorio, C.</creatorcontrib><creatorcontrib>Hasler, P.</creatorcontrib><creatorcontrib>Minch, A.</creatorcontrib><creatorcontrib>Mead, C.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diorio, C.</au><au>Hasler, P.</au><au>Minch, A.</au><au>Mead, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-transistor silicon synapse</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1996-11</date><risdate>1996</risdate><volume>43</volume><issue>11</issue><spage>1972</spage><epage>1980</epage><pages>1972-1980</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor terminal voltages, the synapse can implement a learning function. We have derived a memory-update rule from the physics of the tunneling and injection processes, and have investigated synapse learning in a prototype array. Unlike conventional EEPROM devices, the synapse allows simultaneous memory reading and writing. Synapse transistor arrays can therefore compute both the array output, and local memory updates, in parallel. The synapse is small, and typically is operated at subthreshold current levels; it will permit the development of dense, low-power silicon learning systems.</abstract><pub>IEEE</pub><doi>10.1109/16.543035</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1996-11, Vol.43 (11), p.1972-1980 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_543035 |
source | IEEE Electronic Library (IEL) Journals |
subjects | EPROM MOSFETs Nonvolatile memory Physics Prototypes Read-write memory Secondary generated hot electron injection Silicon Tunneling Voltage |
title | A single-transistor silicon synapse |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-transistor%20silicon%20synapse&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Diorio,%20C.&rft.date=1996-11&rft.volume=43&rft.issue=11&rft.spage=1972&rft.epage=1980&rft.pages=1972-1980&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.543035&rft_dat=%3Cproquest_ieee_%3E29044268%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-9afee77ff222917aebc1fb34c4f7c50768d5daf94865b68f12e66d45f8d4d0613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28606106&rft_id=info:pmid/&rft_ieee_id=543035&rfr_iscdi=true |