Loading…
Dynamically regularized fast RLS with application to echo cancellation
This paper introduces a dynamically regularized fast recursive least squares (DR-FRLS) adaptive filtering algorithm. Numerically stabilized FRLS algorithms exhibit reliable and fast convergence with low complexity even when the excitation signal is highly self-correlated. FRLS still suffers from ins...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a dynamically regularized fast recursive least squares (DR-FRLS) adaptive filtering algorithm. Numerically stabilized FRLS algorithms exhibit reliable and fast convergence with low complexity even when the excitation signal is highly self-correlated. FRLS still suffers from instability, however, when the condition number of the implicit excitation sample covariance matrix is very high. DR-FRLS, overcomes this problem with a regularization process which only increases the computational complexity by 50%. The benefits of regularization include: (1) the ability to use small forgetting factors resulting in improved tracking ability and (2) better convergence over the standard regularization technique of noise injection. Also, DR-FRLS allows the degree of regularization to be modified quickly without restarting the algorithm. The application of DR-FRLS to stabilizing the fast affine projection (FAR) algorithm is also discussed. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.1996.543281 |