Loading…
1.3- \mu m Mode-Locked Disk Laser With Wafer Fused Gain and SESAM Structures
We report 1.3-μm mode-locked optically pumped semiconductor disk laser (SDL) made by wafer fusion. The gain medium and the saturable absorber, both based on an InP material system, were integrated with AlGaAs-GaAs distributed Bragg reflectors by localized wafer fusion. An intracavity wedged diamond...
Saved in:
Published in: | IEEE photonics technology letters 2010-06, Vol.22 (11), p.748-750 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report 1.3-μm mode-locked optically pumped semiconductor disk laser (SDL) made by wafer fusion. The gain medium and the saturable absorber, both based on an InP material system, were integrated with AlGaAs-GaAs distributed Bragg reflectors by localized wafer fusion. An intracavity wedged diamond heat spreader capillary bonded to the gain chip prevents the disruption of 6.4-ps pulse spectrum and supports 100 mW of average power. The results reveal an advantage of wafer fusion process of disparate materials over monolithically grown InP-based gain/absorber structures and demonstrate practical potential of the technique for long-wavelength SDLs. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2010.2045494 |