Loading…
Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks
Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos introduced balanced outcomes to the computer science comm...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 302 |
container_issue | |
container_start_page | 293 |
container_title | |
container_volume | |
creator | Azar, Y. Birnbaum, B. Celis, L.E. Devanur, N.R. Peres, Y. |
description | Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos introduced balanced outcomes to the computer science community and provided a polynomial-time algorithm to compute the set of such outcomes. Their work left open a pertinent question: are there natural, local dynamics that converge quickly to a balanced outcome? In this paper, we provide a partial answer to this question by showing that simple edge-balancing dynamics converge to a balanced outcome whenever one exists. |
doi_str_mv | 10.1109/FOCS.2009.33 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5438622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5438622</ieee_id><sourcerecordid>5438622</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-48e042d5ab82c7e795d4ac15cd91693ed7e969ea765678a353708a5ae3e7d4453</originalsourceid><addsrcrecordid>eNotj7lOw0AURUcCJEJIR0czP2Az-1KCSQKShQugjh4zL8HgeJDHLPl7LMFpbnGkKx1CLjgrOWf-atVUj6VgzJdSHpEzroRSmnNjj8mMCSsKrYQ7JYuc39jE5LRzM7KuUv-Fww77gDRtaZ0CdPT20MO-DZmOid5AB5OMtPkcQ9pjpm1Plz_hFfod0gccv9Pwns_JyRa6jIv_nZPn1fKpuivqZn1fXddFy60eC-WQKRE1vDgRLFqvo4LAdYieGy8xWvTGI1ijjXUgtbTMgQaUaOMUJOfk8u-3RcTNx9DuYThstJLOCCF_Abi4Sj0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azar, Y. ; Birnbaum, B. ; Celis, L.E. ; Devanur, N.R. ; Peres, Y.</creator><creatorcontrib>Azar, Y. ; Birnbaum, B. ; Celis, L.E. ; Devanur, N.R. ; Peres, Y.</creatorcontrib><description>Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos introduced balanced outcomes to the computer science community and provided a polynomial-time algorithm to compute the set of such outcomes. Their work left open a pertinent question: are there natural, local dynamics that converge quickly to a balanced outcome? In this paper, we provide a partial answer to this question by showing that simple edge-balancing dynamics converge to a balanced outcome whenever one exists.</description><identifier>ISSN: 0272-5428</identifier><identifier>ISBN: 1424451167</identifier><identifier>ISBN: 9781424451166</identifier><identifier>DOI: 10.1109/FOCS.2009.33</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Convergence ; Game theory ; Network topology ; Polynomials ; Sociology ; Stability</subject><ispartof>2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009, p.293-302</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5438622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5438622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azar, Y.</creatorcontrib><creatorcontrib>Birnbaum, B.</creatorcontrib><creatorcontrib>Celis, L.E.</creatorcontrib><creatorcontrib>Devanur, N.R.</creatorcontrib><creatorcontrib>Peres, Y.</creatorcontrib><title>Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks</title><title>2009 50th Annual IEEE Symposium on Foundations of Computer Science</title><addtitle>FOCS</addtitle><description>Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos introduced balanced outcomes to the computer science community and provided a polynomial-time algorithm to compute the set of such outcomes. Their work left open a pertinent question: are there natural, local dynamics that converge quickly to a balanced outcome? In this paper, we provide a partial answer to this question by showing that simple edge-balancing dynamics converge to a balanced outcome whenever one exists.</description><subject>Computer science</subject><subject>Convergence</subject><subject>Game theory</subject><subject>Network topology</subject><subject>Polynomials</subject><subject>Sociology</subject><subject>Stability</subject><issn>0272-5428</issn><isbn>1424451167</isbn><isbn>9781424451166</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj7lOw0AURUcCJEJIR0czP2Az-1KCSQKShQugjh4zL8HgeJDHLPl7LMFpbnGkKx1CLjgrOWf-atVUj6VgzJdSHpEzroRSmnNjj8mMCSsKrYQ7JYuc39jE5LRzM7KuUv-Fww77gDRtaZ0CdPT20MO-DZmOid5AB5OMtPkcQ9pjpm1Plz_hFfod0gccv9Pwns_JyRa6jIv_nZPn1fKpuivqZn1fXddFy60eC-WQKRE1vDgRLFqvo4LAdYieGy8xWvTGI1ijjXUgtbTMgQaUaOMUJOfk8u-3RcTNx9DuYThstJLOCCF_Abi4Sj0</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Azar, Y.</creator><creator>Birnbaum, B.</creator><creator>Celis, L.E.</creator><creator>Devanur, N.R.</creator><creator>Peres, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks</title><author>Azar, Y. ; Birnbaum, B. ; Celis, L.E. ; Devanur, N.R. ; Peres, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-48e042d5ab82c7e795d4ac15cd91693ed7e969ea765678a353708a5ae3e7d4453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer science</topic><topic>Convergence</topic><topic>Game theory</topic><topic>Network topology</topic><topic>Polynomials</topic><topic>Sociology</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Azar, Y.</creatorcontrib><creatorcontrib>Birnbaum, B.</creatorcontrib><creatorcontrib>Celis, L.E.</creatorcontrib><creatorcontrib>Devanur, N.R.</creatorcontrib><creatorcontrib>Peres, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azar, Y.</au><au>Birnbaum, B.</au><au>Celis, L.E.</au><au>Devanur, N.R.</au><au>Peres, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks</atitle><btitle>2009 50th Annual IEEE Symposium on Foundations of Computer Science</btitle><stitle>FOCS</stitle><date>2009-10</date><risdate>2009</risdate><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0272-5428</issn><isbn>1424451167</isbn><isbn>9781424451166</isbn><abstract>Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos introduced balanced outcomes to the computer science community and provided a polynomial-time algorithm to compute the set of such outcomes. Their work left open a pertinent question: are there natural, local dynamics that converge quickly to a balanced outcome? In this paper, we provide a partial answer to this question by showing that simple edge-balancing dynamics converge to a balanced outcome whenever one exists.</abstract><pub>IEEE</pub><doi>10.1109/FOCS.2009.33</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-5428 |
ispartof | 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009, p.293-302 |
issn | 0272-5428 |
language | eng |
recordid | cdi_ieee_primary_5438622 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Convergence Game theory Network topology Polynomials Sociology Stability |
title | Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20of%20Local%20Dynamics%20to%20Balanced%20Outcomes%20in%20Exchange%20Networks&rft.btitle=2009%2050th%20Annual%20IEEE%20Symposium%20on%20Foundations%20of%20Computer%20Science&rft.au=Azar,%20Y.&rft.date=2009-10&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0272-5428&rft.isbn=1424451167&rft.isbn_list=9781424451166&rft_id=info:doi/10.1109/FOCS.2009.33&rft_dat=%3Cieee_6IE%3E5438622%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-48e042d5ab82c7e795d4ac15cd91693ed7e969ea765678a353708a5ae3e7d4453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5438622&rfr_iscdi=true |