Loading…
Wavelength-Selective Shape Memory Alloy for Wireless Microactuation of a Bistable Curved Beam
Wireless and/or sensorless components offer a great potential for friendly integration in mechatronic systems. This paper presents a wireless technique to actuate a bistable curved beam using wavelength-selective shape-memory-alloy (SMA) thin foils. The SMA thin foil is irradiated remotely by contin...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2011-12, Vol.58 (12), p.5288-5295 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wireless and/or sensorless components offer a great potential for friendly integration in mechatronic systems. This paper presents a wireless technique to actuate a bistable curved beam using wavelength-selective shape-memory-alloy (SMA) thin foils. The SMA thin foil is irradiated remotely by continuous-mode laser diodes of 785 and 658 nm wavelengths. First, a comparison between two numerical thermal models is done. These models obey the same conduction and convection equations but the effect of phase transformation is integrated in two different ways. A good agreement is found between the two simulation results. Then, the force generated by the SMA sample (size: 3 mm × 1 mm × 0.1 mm), during martensite-to-austenite phase transformation, is experimentally measured using a miniature force sensor. The force comes out to be 403 mN with 70 mW laser power. Using this force value, a bistable curved beam is designed and fabricated by rapid prototyping technique. Optical filtering layers, which are responsible for the wavelength-selective response, are directly deposited onto the SMA samples. Finally, two SMA samples are used to switch the curved beam between its two stable positions. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2010.2046609 |