Loading…
Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic
The purpose of this paper is to use thermal energy and electrostatic force as an alternative to high-cost precision cutting or traditional injection molding in the fabrication of COC (cyclo-olefin copolymer) plastic aspheric bi-convex lenses with high Blu-Ray transmittance (92% at 405 nm). A glass s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this paper is to use thermal energy and electrostatic force as an alternative to high-cost precision cutting or traditional injection molding in the fabrication of COC (cyclo-olefin copolymer) plastic aspheric bi-convex lenses with high Blu-Ray transmittance (92% at 405 nm). A glass substrate was used, and ultrasonic drilling defined the clear aperture of the aspheric bi-convex lens. The resulting lenses have a clear aperture of approximately 1.14 mm and a front focal length of 4.97 mm, and the spot size of the fabricated aspheric bi-convex lenses can be controlled to approximately 0.588 ¿m. This technology is capable of fabricating lenses for application in micro-optical systems. |
---|---|
ISSN: | 1084-6999 |
DOI: | 10.1109/MEMSYS.2010.5442284 |