Loading…

Fault tolerant Block Based Neural Networks

Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fau...

Full description

Saved in:
Bibliographic Details
Main Authors: Haridass, Sai sri Krishna, Hoe, David
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 361
container_issue
container_start_page 357
container_title
container_volume
creator Haridass, Sai sri Krishna
Hoe, David
description Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.
doi_str_mv 10.1109/SSST.2010.5442804
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5442804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5442804</ieee_id><sourcerecordid>5442804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073</originalsourceid><addsrcrecordid>eNo1j01Lw0AURZ9fYFr7A8RN1kLqe5N5mZmlLVYLpS5S1-VlMoHYaCRJEf-9AevqcLlwLhfglnBOhO4hz_PdXOEYWWtlUZ_BzBlLWmnNmSN7DpGijBJLKV_A5L9AewkRotOJss5ew6Tv3xExyxRHcL-SYzPEQ9uETj6HeNG0_hAvpA9lvA3HTpoRw3fbHfobuKqk6cPsxCm8rZ52y5dk8_q8Xj5ukpoMDwmXDpVIKJHHOTRciGKpjGefii0JhbD0bL0PKB4DFliQYKpNVViPJp3C3Z-3DiHsv7r6Q7qf_elz-gviD0WQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault tolerant Block Based Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Haridass, Sai sri Krishna ; Hoe, David</creator><creatorcontrib>Haridass, Sai sri Krishna ; Hoe, David</creatorcontrib><description>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 1424456908</identifier><identifier>ISBN: 9781424456901</identifier><identifier>EISSN: 2161-8135</identifier><identifier>EISBN: 9781424456918</identifier><identifier>EISBN: 1424456916</identifier><identifier>EISBN: 9781424456925</identifier><identifier>EISBN: 1424456924</identifier><identifier>DOI: 10.1109/SSST.2010.5442804</identifier><language>eng</language><publisher>IEEE</publisher><subject>Block based network ; Circuit faults ; Fabrics ; Fault detection ; Fault detection and correction ; Fault tolerance ; Fault tolerant systems ; Integrated circuit interconnections ; Logic ; Network topology ; Neural network hardware ; Neural networks ; Reconfigurable logic</subject><ispartof>2010 42nd Southeastern Symposium on System Theory (SSST), 2010, p.357-361</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5442804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5442804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haridass, Sai sri Krishna</creatorcontrib><creatorcontrib>Hoe, David</creatorcontrib><title>Fault tolerant Block Based Neural Networks</title><title>2010 42nd Southeastern Symposium on System Theory (SSST)</title><addtitle>SSST</addtitle><description>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</description><subject>Block based network</subject><subject>Circuit faults</subject><subject>Fabrics</subject><subject>Fault detection</subject><subject>Fault detection and correction</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Integrated circuit interconnections</subject><subject>Logic</subject><subject>Network topology</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Reconfigurable logic</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>1424456908</isbn><isbn>9781424456901</isbn><isbn>9781424456918</isbn><isbn>1424456916</isbn><isbn>9781424456925</isbn><isbn>1424456924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURZ9fYFr7A8RN1kLqe5N5mZmlLVYLpS5S1-VlMoHYaCRJEf-9AevqcLlwLhfglnBOhO4hz_PdXOEYWWtlUZ_BzBlLWmnNmSN7DpGijBJLKV_A5L9AewkRotOJss5ew6Tv3xExyxRHcL-SYzPEQ9uETj6HeNG0_hAvpA9lvA3HTpoRw3fbHfobuKqk6cPsxCm8rZ52y5dk8_q8Xj5ukpoMDwmXDpVIKJHHOTRciGKpjGefii0JhbD0bL0PKB4DFliQYKpNVViPJp3C3Z-3DiHsv7r6Q7qf_elz-gviD0WQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Haridass, Sai sri Krishna</creator><creator>Hoe, David</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Fault tolerant Block Based Neural Networks</title><author>Haridass, Sai sri Krishna ; Hoe, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Block based network</topic><topic>Circuit faults</topic><topic>Fabrics</topic><topic>Fault detection</topic><topic>Fault detection and correction</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Integrated circuit interconnections</topic><topic>Logic</topic><topic>Network topology</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Reconfigurable logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Haridass, Sai sri Krishna</creatorcontrib><creatorcontrib>Hoe, David</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haridass, Sai sri Krishna</au><au>Hoe, David</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault tolerant Block Based Neural Networks</atitle><btitle>2010 42nd Southeastern Symposium on System Theory (SSST)</btitle><stitle>SSST</stitle><date>2010-03</date><risdate>2010</risdate><spage>357</spage><epage>361</epage><pages>357-361</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>1424456908</isbn><isbn>9781424456901</isbn><eisbn>9781424456918</eisbn><eisbn>1424456916</eisbn><eisbn>9781424456925</eisbn><eisbn>1424456924</eisbn><abstract>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</abstract><pub>IEEE</pub><doi>10.1109/SSST.2010.5442804</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0094-2898
ispartof 2010 42nd Southeastern Symposium on System Theory (SSST), 2010, p.357-361
issn 0094-2898
2161-8135
language eng
recordid cdi_ieee_primary_5442804
source IEEE Xplore All Conference Series
subjects Block based network
Circuit faults
Fabrics
Fault detection
Fault detection and correction
Fault tolerance
Fault tolerant systems
Integrated circuit interconnections
Logic
Network topology
Neural network hardware
Neural networks
Reconfigurable logic
title Fault tolerant Block Based Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20tolerant%20Block%20Based%20Neural%20Networks&rft.btitle=2010%2042nd%20Southeastern%20Symposium%20on%20System%20Theory%20(SSST)&rft.au=Haridass,%20Sai%20sri%20Krishna&rft.date=2010-03&rft.spage=357&rft.epage=361&rft.pages=357-361&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=1424456908&rft.isbn_list=9781424456901&rft_id=info:doi/10.1109/SSST.2010.5442804&rft.eisbn=9781424456918&rft.eisbn_list=1424456916&rft.eisbn_list=9781424456925&rft.eisbn_list=1424456924&rft_dat=%3Cieee_CHZPO%3E5442804%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5442804&rfr_iscdi=true