Loading…
Fault tolerant Block Based Neural Networks
Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fau...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 361 |
container_issue | |
container_start_page | 357 |
container_title | |
container_volume | |
creator | Haridass, Sai sri Krishna Hoe, David |
description | Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric. |
doi_str_mv | 10.1109/SSST.2010.5442804 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5442804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5442804</ieee_id><sourcerecordid>5442804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073</originalsourceid><addsrcrecordid>eNo1j01Lw0AURZ9fYFr7A8RN1kLqe5N5mZmlLVYLpS5S1-VlMoHYaCRJEf-9AevqcLlwLhfglnBOhO4hz_PdXOEYWWtlUZ_BzBlLWmnNmSN7DpGijBJLKV_A5L9AewkRotOJss5ew6Tv3xExyxRHcL-SYzPEQ9uETj6HeNG0_hAvpA9lvA3HTpoRw3fbHfobuKqk6cPsxCm8rZ52y5dk8_q8Xj5ukpoMDwmXDpVIKJHHOTRciGKpjGefii0JhbD0bL0PKB4DFliQYKpNVViPJp3C3Z-3DiHsv7r6Q7qf_elz-gviD0WQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault tolerant Block Based Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Haridass, Sai sri Krishna ; Hoe, David</creator><creatorcontrib>Haridass, Sai sri Krishna ; Hoe, David</creatorcontrib><description>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 1424456908</identifier><identifier>ISBN: 9781424456901</identifier><identifier>EISSN: 2161-8135</identifier><identifier>EISBN: 9781424456918</identifier><identifier>EISBN: 1424456916</identifier><identifier>EISBN: 9781424456925</identifier><identifier>EISBN: 1424456924</identifier><identifier>DOI: 10.1109/SSST.2010.5442804</identifier><language>eng</language><publisher>IEEE</publisher><subject>Block based network ; Circuit faults ; Fabrics ; Fault detection ; Fault detection and correction ; Fault tolerance ; Fault tolerant systems ; Integrated circuit interconnections ; Logic ; Network topology ; Neural network hardware ; Neural networks ; Reconfigurable logic</subject><ispartof>2010 42nd Southeastern Symposium on System Theory (SSST), 2010, p.357-361</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5442804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5442804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haridass, Sai sri Krishna</creatorcontrib><creatorcontrib>Hoe, David</creatorcontrib><title>Fault tolerant Block Based Neural Networks</title><title>2010 42nd Southeastern Symposium on System Theory (SSST)</title><addtitle>SSST</addtitle><description>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</description><subject>Block based network</subject><subject>Circuit faults</subject><subject>Fabrics</subject><subject>Fault detection</subject><subject>Fault detection and correction</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Integrated circuit interconnections</subject><subject>Logic</subject><subject>Network topology</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Reconfigurable logic</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>1424456908</isbn><isbn>9781424456901</isbn><isbn>9781424456918</isbn><isbn>1424456916</isbn><isbn>9781424456925</isbn><isbn>1424456924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURZ9fYFr7A8RN1kLqe5N5mZmlLVYLpS5S1-VlMoHYaCRJEf-9AevqcLlwLhfglnBOhO4hz_PdXOEYWWtlUZ_BzBlLWmnNmSN7DpGijBJLKV_A5L9AewkRotOJss5ew6Tv3xExyxRHcL-SYzPEQ9uETj6HeNG0_hAvpA9lvA3HTpoRw3fbHfobuKqk6cPsxCm8rZ52y5dk8_q8Xj5ukpoMDwmXDpVIKJHHOTRciGKpjGefii0JhbD0bL0PKB4DFliQYKpNVViPJp3C3Z-3DiHsv7r6Q7qf_elz-gviD0WQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Haridass, Sai sri Krishna</creator><creator>Hoe, David</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Fault tolerant Block Based Neural Networks</title><author>Haridass, Sai sri Krishna ; Hoe, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Block based network</topic><topic>Circuit faults</topic><topic>Fabrics</topic><topic>Fault detection</topic><topic>Fault detection and correction</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Integrated circuit interconnections</topic><topic>Logic</topic><topic>Network topology</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Reconfigurable logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Haridass, Sai sri Krishna</creatorcontrib><creatorcontrib>Hoe, David</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haridass, Sai sri Krishna</au><au>Hoe, David</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault tolerant Block Based Neural Networks</atitle><btitle>2010 42nd Southeastern Symposium on System Theory (SSST)</btitle><stitle>SSST</stitle><date>2010-03</date><risdate>2010</risdate><spage>357</spage><epage>361</epage><pages>357-361</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>1424456908</isbn><isbn>9781424456901</isbn><eisbn>9781424456918</eisbn><eisbn>1424456916</eisbn><eisbn>9781424456925</eisbn><eisbn>1424456924</eisbn><abstract>Block Based Neural Networks (BBNNs) have shown to be a practical means for implementing evolvable hardware on reconfigurable fabrics for solving a variety of problems that take advantage of the massive parallelism offered by a neural network approach. This paper proposes a method for obtaining a fault tolerant implementation of BBNNs by using a biologically inspired layered design. At the lowest level, each block has its own online detection and correcting logic combined with sufficient spare components to ensure recovery from permanent and transient errors. Another layer of hierarchy combines the blocks into clusters, where a redundant column of blocks can be used to replace blocks that cannot be repaired at the lowest level. The hierarchical approach is well-suited to a divide-and-conquer approach to genetic programming whereby complex problems are subdivided into smaller parts. The overall approach can be implemented on a reconfigurable fabric.</abstract><pub>IEEE</pub><doi>10.1109/SSST.2010.5442804</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0094-2898 |
ispartof | 2010 42nd Southeastern Symposium on System Theory (SSST), 2010, p.357-361 |
issn | 0094-2898 2161-8135 |
language | eng |
recordid | cdi_ieee_primary_5442804 |
source | IEEE Xplore All Conference Series |
subjects | Block based network Circuit faults Fabrics Fault detection Fault detection and correction Fault tolerance Fault tolerant systems Integrated circuit interconnections Logic Network topology Neural network hardware Neural networks Reconfigurable logic |
title | Fault tolerant Block Based Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20tolerant%20Block%20Based%20Neural%20Networks&rft.btitle=2010%2042nd%20Southeastern%20Symposium%20on%20System%20Theory%20(SSST)&rft.au=Haridass,%20Sai%20sri%20Krishna&rft.date=2010-03&rft.spage=357&rft.epage=361&rft.pages=357-361&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=1424456908&rft.isbn_list=9781424456901&rft_id=info:doi/10.1109/SSST.2010.5442804&rft.eisbn=9781424456918&rft.eisbn_list=1424456916&rft.eisbn_list=9781424456925&rft.eisbn_list=1424456924&rft_dat=%3Cieee_CHZPO%3E5442804%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5d902aaed05898075ba25af7c5c3a8d10a10dc58cce0ac0e0b0b1a0347fb8c073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5442804&rfr_iscdi=true |