Loading…

Design sensitivity analysis of squeeze casting process

Optimisation studies have explored the application of a number of strategies. These include principally gradient methods and genetic algorithms. The former require the calculation of gradients that link design parameters with system response and combined with optimisation routines, they are used to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad, Rosli, Hashim, M Y, Idris, M H
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 345
container_issue
container_start_page 342
container_title
container_volume 5
creator Ahmad, Rosli
Hashim, M Y
Idris, M H
description Optimisation studies have explored the application of a number of strategies. These include principally gradient methods and genetic algorithms. The former require the calculation of gradients that link design parameters with system response and combined with optimisation routines, they are used to find the best design according to a specified objective function and design variable constraints. Although they require gradient calculation, they are less computationally demanding, but are restricted in their search field. Gradient-based optimisation is one of the most popular strategies in tackling optimisation in engineering design problems.
doi_str_mv 10.1109/ICCAE.2010.5451417
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5451417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5451417</ieee_id><sourcerecordid>5451417</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b068bd39fc7eb171ad29b59befba32edfdc918caa15b9819eaed7b15bb1f7803</originalsourceid><addsrcrecordid>eNpNj81Kw0AUhUekoNa8gG7mBVLnTuZ3WWKthYIbXZeZ5E4ZqWnNjUJ8egN24dkcvsV34DB2B2IBIPzDpq6Xq4UUE2ulQYG9YIW3DpRUSmtn7OV_Nl7M2I0UwvvKOWuuWEH0LqZMsnPqmplHpLzvOGFHecjfeRh56MJhpEz8mDh9fiH-IG8CDbnb81N_bJDols1SOBAW556zt6fVa_1cbl_Wm3q5LTNYPZQmCuNiW_nUWIxgIbTSR-0jphgqiW1qGw-uCQF09A48BmxtnCBCsk5Uc3b_t5sRcXfq80fox935evULXohLwA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design sensitivity analysis of squeeze casting process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmad, Rosli ; Hashim, M Y ; Idris, M H</creator><creatorcontrib>Ahmad, Rosli ; Hashim, M Y ; Idris, M H</creatorcontrib><description>Optimisation studies have explored the application of a number of strategies. These include principally gradient methods and genetic algorithms. The former require the calculation of gradients that link design parameters with system response and combined with optimisation routines, they are used to find the best design according to a specified objective function and design variable constraints. Although they require gradient calculation, they are less computationally demanding, but are restricted in their search field. Gradient-based optimisation is one of the most popular strategies in tackling optimisation in engineering design problems.</description><identifier>ISBN: 9781424455690</identifier><identifier>ISBN: 1424455693</identifier><identifier>ISBN: 1424455855</identifier><identifier>ISBN: 9781424455850</identifier><identifier>EISBN: 9781424455867</identifier><identifier>EISBN: 1424455863</identifier><identifier>DOI: 10.1109/ICCAE.2010.5451417</identifier><identifier>LCCN: 2009938876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adjoint Variable Method ; Analytical models ; Computational modeling ; Design optimization ; Design Sensitivity Analysis ; Die casting ; Friction ; Industrial engineering ; Manufacturing processes ; Mechanical engineering ; Production ; Sensitivity analysis ; Squeeze Casting Process</subject><ispartof>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.342-345</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5451417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5451417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Rosli</creatorcontrib><creatorcontrib>Hashim, M Y</creatorcontrib><creatorcontrib>Idris, M H</creatorcontrib><title>Design sensitivity analysis of squeeze casting process</title><title>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</title><addtitle>ICCAE</addtitle><description>Optimisation studies have explored the application of a number of strategies. These include principally gradient methods and genetic algorithms. The former require the calculation of gradients that link design parameters with system response and combined with optimisation routines, they are used to find the best design according to a specified objective function and design variable constraints. Although they require gradient calculation, they are less computationally demanding, but are restricted in their search field. Gradient-based optimisation is one of the most popular strategies in tackling optimisation in engineering design problems.</description><subject>Adjoint Variable Method</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Design Sensitivity Analysis</subject><subject>Die casting</subject><subject>Friction</subject><subject>Industrial engineering</subject><subject>Manufacturing processes</subject><subject>Mechanical engineering</subject><subject>Production</subject><subject>Sensitivity analysis</subject><subject>Squeeze Casting Process</subject><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><isbn>9781424455867</isbn><isbn>1424455863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNj81Kw0AUhUekoNa8gG7mBVLnTuZ3WWKthYIbXZeZ5E4ZqWnNjUJ8egN24dkcvsV34DB2B2IBIPzDpq6Xq4UUE2ulQYG9YIW3DpRUSmtn7OV_Nl7M2I0UwvvKOWuuWEH0LqZMsnPqmplHpLzvOGFHecjfeRh56MJhpEz8mDh9fiH-IG8CDbnb81N_bJDols1SOBAW556zt6fVa_1cbl_Wm3q5LTNYPZQmCuNiW_nUWIxgIbTSR-0jphgqiW1qGw-uCQF09A48BmxtnCBCsk5Uc3b_t5sRcXfq80fox935evULXohLwA</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Ahmad, Rosli</creator><creator>Hashim, M Y</creator><creator>Idris, M H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Design sensitivity analysis of squeeze casting process</title><author>Ahmad, Rosli ; Hashim, M Y ; Idris, M H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b068bd39fc7eb171ad29b59befba32edfdc918caa15b9819eaed7b15bb1f7803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adjoint Variable Method</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Design Sensitivity Analysis</topic><topic>Die casting</topic><topic>Friction</topic><topic>Industrial engineering</topic><topic>Manufacturing processes</topic><topic>Mechanical engineering</topic><topic>Production</topic><topic>Sensitivity analysis</topic><topic>Squeeze Casting Process</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Rosli</creatorcontrib><creatorcontrib>Hashim, M Y</creatorcontrib><creatorcontrib>Idris, M H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Rosli</au><au>Hashim, M Y</au><au>Idris, M H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design sensitivity analysis of squeeze casting process</atitle><btitle>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</btitle><stitle>ICCAE</stitle><date>2010-02</date><risdate>2010</risdate><volume>5</volume><spage>342</spage><epage>345</epage><pages>342-345</pages><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><eisbn>9781424455867</eisbn><eisbn>1424455863</eisbn><abstract>Optimisation studies have explored the application of a number of strategies. These include principally gradient methods and genetic algorithms. The former require the calculation of gradients that link design parameters with system response and combined with optimisation routines, they are used to find the best design according to a specified objective function and design variable constraints. Although they require gradient calculation, they are less computationally demanding, but are restricted in their search field. Gradient-based optimisation is one of the most popular strategies in tackling optimisation in engineering design problems.</abstract><pub>IEEE</pub><doi>10.1109/ICCAE.2010.5451417</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424455690
ispartof 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.342-345
issn
language eng
recordid cdi_ieee_primary_5451417
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adjoint Variable Method
Analytical models
Computational modeling
Design optimization
Design Sensitivity Analysis
Die casting
Friction
Industrial engineering
Manufacturing processes
Mechanical engineering
Production
Sensitivity analysis
Squeeze Casting Process
title Design sensitivity analysis of squeeze casting process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20sensitivity%20analysis%20of%20squeeze%20casting%20process&rft.btitle=2010%20The%202nd%20International%20Conference%20on%20Computer%20and%20Automation%20Engineering%20(ICCAE)&rft.au=Ahmad,%20Rosli&rft.date=2010-02&rft.volume=5&rft.spage=342&rft.epage=345&rft.pages=342-345&rft.isbn=9781424455690&rft.isbn_list=1424455693&rft.isbn_list=1424455855&rft.isbn_list=9781424455850&rft_id=info:doi/10.1109/ICCAE.2010.5451417&rft.eisbn=9781424455867&rft.eisbn_list=1424455863&rft_dat=%3Cieee_6IE%3E5451417%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6b068bd39fc7eb171ad29b59befba32edfdc918caa15b9819eaed7b15bb1f7803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5451417&rfr_iscdi=true