Loading…

Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects

Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and...

Full description

Saved in:
Bibliographic Details
Main Authors: Persak, Steven C, Sanghun Sin, Arens, Raanan, Wootton, David M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Persak, Steven C
Sanghun Sin
Arens, Raanan
Wootton, David M
description Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.
doi_str_mv 10.1109/NEBC.2010.5458124
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5458124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5458124</ieee_id><sourcerecordid>5458124</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc2jEm3pByA2_oEUv-LYS4gKVCpUot1XTjwprvKS44C649NJ1W7u1b1nZhaD0AMlc0qJfvpcvKRzRoYYi1hRJq7QhAomhNSMy2s0ZlSSKCFM3aCZTtSZqUTr2wuTWskRGisVSSFjmdyhSdcdCOGaMTpGf2lTtX0wwTW1KXFR9s5ie6xN5fIOV42F0tV73BS4b1vw2Dj_a47Y9v5UB2eHpcyDCd-n3Hcn_WnKvoJobwJY_PG1xK7G683zBpva4rypg29K3PXZAfLQ3aNRYcoOZhefou3rYpu-R6v12zJ9XkVOkxDFkgOXnGQWCGSacGsyyYos1naQuNAACQiR84RKSgXJhjGppUiMUQSKmE_R4_msA4Bd611l_HF3eSr_B7DNZz0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</creator><creatorcontrib>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</creatorcontrib><description>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</description><identifier>ISSN: 2160-6986</identifier><identifier>ISBN: 9781424468799</identifier><identifier>ISBN: 1424468795</identifier><identifier>EISSN: 2160-7028</identifier><identifier>EISBN: 1424469236</identifier><identifier>EISBN: 9781424469239</identifier><identifier>EISBN: 1424469244</identifier><identifier>EISBN: 9781424469246</identifier><identifier>DOI: 10.1109/NEBC.2010.5458124</identifier><identifier>LCCN: 88-646567</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational fluid dynamics ; Computational modeling ; Data mining ; Fluid flow control ; Image segmentation ; Magnetic analysis ; Magnetic resonance ; Magnetic resonance imaging ; Performance analysis ; Sleep apnea</subject><ispartof>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5458124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5458124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Persak, Steven C</creatorcontrib><creatorcontrib>Sanghun Sin</creatorcontrib><creatorcontrib>Arens, Raanan</creatorcontrib><creatorcontrib>Wootton, David M</creatorcontrib><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><title>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC)</title><addtitle>NEBC</addtitle><description>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</description><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Fluid flow control</subject><subject>Image segmentation</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Performance analysis</subject><subject>Sleep apnea</subject><issn>2160-6986</issn><issn>2160-7028</issn><isbn>9781424468799</isbn><isbn>1424468795</isbn><isbn>1424469236</isbn><isbn>9781424469239</isbn><isbn>1424469244</isbn><isbn>9781424469246</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAQRc2jEm3pByA2_oEUv-LYS4gKVCpUot1XTjwprvKS44C649NJ1W7u1b1nZhaD0AMlc0qJfvpcvKRzRoYYi1hRJq7QhAomhNSMy2s0ZlSSKCFM3aCZTtSZqUTr2wuTWskRGisVSSFjmdyhSdcdCOGaMTpGf2lTtX0wwTW1KXFR9s5ie6xN5fIOV42F0tV73BS4b1vw2Dj_a47Y9v5UB2eHpcyDCd-n3Hcn_WnKvoJobwJY_PG1xK7G683zBpva4rypg29K3PXZAfLQ3aNRYcoOZhefou3rYpu-R6v12zJ9XkVOkxDFkgOXnGQWCGSacGsyyYos1naQuNAACQiR84RKSgXJhjGppUiMUQSKmE_R4_msA4Bd611l_HF3eSr_B7DNZz0</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Persak, Steven C</creator><creator>Sanghun Sin</creator><creator>Arens, Raanan</creator><creator>Wootton, David M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><author>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Fluid flow control</topic><topic>Image segmentation</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Performance analysis</topic><topic>Sleep apnea</topic><toplevel>online_resources</toplevel><creatorcontrib>Persak, Steven C</creatorcontrib><creatorcontrib>Sanghun Sin</creatorcontrib><creatorcontrib>Arens, Raanan</creatorcontrib><creatorcontrib>Wootton, David M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Persak, Steven C</au><au>Sanghun Sin</au><au>Arens, Raanan</au><au>Wootton, David M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</atitle><btitle>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC)</btitle><stitle>NEBC</stitle><date>2010-03</date><risdate>2010</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><issn>2160-6986</issn><eissn>2160-7028</eissn><isbn>9781424468799</isbn><isbn>1424468795</isbn><eisbn>1424469236</eisbn><eisbn>9781424469239</eisbn><eisbn>1424469244</eisbn><eisbn>9781424469246</eisbn><abstract>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</abstract><pub>IEEE</pub><doi>10.1109/NEBC.2010.5458124</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-6986
ispartof Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010, p.1-2
issn 2160-6986
2160-7028
language eng
recordid cdi_ieee_primary_5458124
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational fluid dynamics
Computational modeling
Data mining
Fluid flow control
Image segmentation
Magnetic analysis
Magnetic resonance
Magnetic resonance imaging
Performance analysis
Sleep apnea
title Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20fluid%20dynamics%20modeling%20of%20upper%20airway%20during%20tidal%20breathing%20using%20volume-gated%20MRI%20in%20OSAS%20and%20control%20subjects&rft.btitle=Proceedings%20of%20the%202010%20IEEE%2036th%20Annual%20Northeast%20Bioengineering%20Conference%20(NEBEC)&rft.au=Persak,%20Steven%20C&rft.date=2010-03&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.issn=2160-6986&rft.eissn=2160-7028&rft.isbn=9781424468799&rft.isbn_list=1424468795&rft_id=info:doi/10.1109/NEBC.2010.5458124&rft.eisbn=1424469236&rft.eisbn_list=9781424469239&rft.eisbn_list=1424469244&rft.eisbn_list=9781424469246&rft_dat=%3Cieee_6IE%3E5458124%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5458124&rfr_iscdi=true