Loading…
Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects
Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Persak, Steven C Sanghun Sin Arens, Raanan Wootton, David M |
description | Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance. |
doi_str_mv | 10.1109/NEBC.2010.5458124 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5458124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5458124</ieee_id><sourcerecordid>5458124</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc2jEm3pByA2_oEUv-LYS4gKVCpUot1XTjwprvKS44C649NJ1W7u1b1nZhaD0AMlc0qJfvpcvKRzRoYYi1hRJq7QhAomhNSMy2s0ZlSSKCFM3aCZTtSZqUTr2wuTWskRGisVSSFjmdyhSdcdCOGaMTpGf2lTtX0wwTW1KXFR9s5ie6xN5fIOV42F0tV73BS4b1vw2Dj_a47Y9v5UB2eHpcyDCd-n3Hcn_WnKvoJobwJY_PG1xK7G683zBpva4rypg29K3PXZAfLQ3aNRYcoOZhefou3rYpu-R6v12zJ9XkVOkxDFkgOXnGQWCGSacGsyyYos1naQuNAACQiR84RKSgXJhjGppUiMUQSKmE_R4_msA4Bd611l_HF3eSr_B7DNZz0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</creator><creatorcontrib>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</creatorcontrib><description>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</description><identifier>ISSN: 2160-6986</identifier><identifier>ISBN: 9781424468799</identifier><identifier>ISBN: 1424468795</identifier><identifier>EISSN: 2160-7028</identifier><identifier>EISBN: 1424469236</identifier><identifier>EISBN: 9781424469239</identifier><identifier>EISBN: 1424469244</identifier><identifier>EISBN: 9781424469246</identifier><identifier>DOI: 10.1109/NEBC.2010.5458124</identifier><identifier>LCCN: 88-646567</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational fluid dynamics ; Computational modeling ; Data mining ; Fluid flow control ; Image segmentation ; Magnetic analysis ; Magnetic resonance ; Magnetic resonance imaging ; Performance analysis ; Sleep apnea</subject><ispartof>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5458124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5458124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Persak, Steven C</creatorcontrib><creatorcontrib>Sanghun Sin</creatorcontrib><creatorcontrib>Arens, Raanan</creatorcontrib><creatorcontrib>Wootton, David M</creatorcontrib><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><title>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC)</title><addtitle>NEBC</addtitle><description>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</description><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Fluid flow control</subject><subject>Image segmentation</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Performance analysis</subject><subject>Sleep apnea</subject><issn>2160-6986</issn><issn>2160-7028</issn><isbn>9781424468799</isbn><isbn>1424468795</isbn><isbn>1424469236</isbn><isbn>9781424469239</isbn><isbn>1424469244</isbn><isbn>9781424469246</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAQRc2jEm3pByA2_oEUv-LYS4gKVCpUot1XTjwprvKS44C649NJ1W7u1b1nZhaD0AMlc0qJfvpcvKRzRoYYi1hRJq7QhAomhNSMy2s0ZlSSKCFM3aCZTtSZqUTr2wuTWskRGisVSSFjmdyhSdcdCOGaMTpGf2lTtX0wwTW1KXFR9s5ie6xN5fIOV42F0tV73BS4b1vw2Dj_a47Y9v5UB2eHpcyDCd-n3Hcn_WnKvoJobwJY_PG1xK7G683zBpva4rypg29K3PXZAfLQ3aNRYcoOZhefou3rYpu-R6v12zJ9XkVOkxDFkgOXnGQWCGSacGsyyYos1naQuNAACQiR84RKSgXJhjGppUiMUQSKmE_R4_msA4Bd611l_HF3eSr_B7DNZz0</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Persak, Steven C</creator><creator>Sanghun Sin</creator><creator>Arens, Raanan</creator><creator>Wootton, David M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</title><author>Persak, Steven C ; Sanghun Sin ; Arens, Raanan ; Wootton, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Fluid flow control</topic><topic>Image segmentation</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Performance analysis</topic><topic>Sleep apnea</topic><toplevel>online_resources</toplevel><creatorcontrib>Persak, Steven C</creatorcontrib><creatorcontrib>Sanghun Sin</creatorcontrib><creatorcontrib>Arens, Raanan</creatorcontrib><creatorcontrib>Wootton, David M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Persak, Steven C</au><au>Sanghun Sin</au><au>Arens, Raanan</au><au>Wootton, David M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects</atitle><btitle>Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC)</btitle><stitle>NEBC</stitle><date>2010-03</date><risdate>2010</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><issn>2160-6986</issn><eissn>2160-7028</eissn><isbn>9781424468799</isbn><isbn>1424468795</isbn><eisbn>1424469236</eisbn><eisbn>9781424469239</eisbn><eisbn>1424469244</eisbn><eisbn>9781424469246</eisbn><abstract>Three-dimensional (3D) analysis of the deforming airway during tidal breathing has not been performed in children with obstructive sleep apnea. We used volume-gated magnetic resonance images to segment, surface, and volume mesh the airway of one child with obstructive sleep apnea syndrome (OSAS) and one control. A computational fluid dynamics (CFD) study was performed on each airway at flow rates corresponding to 10 time points of a respiratory cycle extracted from flow data averaged over 12 consecutive breathing cycles. 3D CFD analysis showed the minimum inspiratory pressure for the OSAS subject was -250.76 Pa and -124.24 Pa for the control. Gated MRI images depicted an overall 47% decrease in airway volume over the inspiratory cycle for the OSAS subject while the control experienced no collapse. Pressure distribution corrected for nasal resistance and turbulence kinetic energy data suggest airway collapsibility in the OSAS is a function of pharyngeal resistance and fluid and tissue mechanics rather than entirely nasal resistance.</abstract><pub>IEEE</pub><doi>10.1109/NEBC.2010.5458124</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-6986 |
ispartof | Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010, p.1-2 |
issn | 2160-6986 2160-7028 |
language | eng |
recordid | cdi_ieee_primary_5458124 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational fluid dynamics Computational modeling Data mining Fluid flow control Image segmentation Magnetic analysis Magnetic resonance Magnetic resonance imaging Performance analysis Sleep apnea |
title | Computational fluid dynamics modeling of upper airway during tidal breathing using volume-gated MRI in OSAS and control subjects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20fluid%20dynamics%20modeling%20of%20upper%20airway%20during%20tidal%20breathing%20using%20volume-gated%20MRI%20in%20OSAS%20and%20control%20subjects&rft.btitle=Proceedings%20of%20the%202010%20IEEE%2036th%20Annual%20Northeast%20Bioengineering%20Conference%20(NEBEC)&rft.au=Persak,%20Steven%20C&rft.date=2010-03&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.issn=2160-6986&rft.eissn=2160-7028&rft.isbn=9781424468799&rft.isbn_list=1424468795&rft_id=info:doi/10.1109/NEBC.2010.5458124&rft.eisbn=1424469236&rft.eisbn_list=9781424469239&rft.eisbn_list=1424469244&rft.eisbn_list=9781424469246&rft_dat=%3Cieee_6IE%3E5458124%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-563e3630bde0eb903dab62fb59dfb55f9ee7e44c37161140be0e69647aa80ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5458124&rfr_iscdi=true |