Loading…

Computation complexity of branch-and-bound model selection

Segmentation problems are one of the most important areas of research in computer vision. While segmentation problems are generally solved with clustering paradigms, they formulate the problem as recursive. Additionally, most approaches need the number of clusters to be known beforehand. This requir...

Full description

Saved in:
Bibliographic Details
Main Authors: Thakoor, Ninad, Devarajan, Venkat, Gao, Jean
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1900
container_issue
container_start_page 1895
container_title
container_volume
creator Thakoor, Ninad
Devarajan, Venkat
Gao, Jean
description Segmentation problems are one of the most important areas of research in computer vision. While segmentation problems are generally solved with clustering paradigms, they formulate the problem as recursive. Additionally, most approaches need the number of clusters to be known beforehand. This requirement is unreasonable for majority of the computer vision problems. This paper analyzes the model selection perspective which can overcome these limitations. Under this framework multiple hypotheses for cluster centers are generated using spatially coherent sampling. An optimal subset of these hypotheses is selected according to a model selection criterion. The selection can be carried out with a branch-and-bound procedure. The worst case complexity of any branch-and-bound algorithm is exponential. However, the average complexity of the algorithm is significantly lower. In this paper, we develop a framework for analysis of average complexity of the algorithm from the statistics of model selection costs.
doi_str_mv 10.1109/ICCV.2009.5459420
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459420</ieee_id><sourcerecordid>5459420</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4115b071ce6dce3d59de034e8766f8fce48e3f53c0ab998f6cc5cbfc645072263</originalsourceid><addsrcrecordid>eNotkEtLw0AUhccXmNb-AHGTPzDxzuPOw50EH4WCG3Vbkpk7GEmTkqRg_70VczbnwHc4i8PYrYBCCPD367L8LCSAL1Cj1xLO2EJoqU8SHs9ZJpUDbhH0BVt562YmAS9ZJhCBo_b-mi3G8RtAeelMxh7Kfrc_TNXU9F0eTrmln2Y65n3K66Hqwhevusjr_tDFfNdHavORWgp_9Rt2lap2pNXsS_bx_PRevvLN28u6fNzwRlicuBYCa7AikImBVEQfCZQmZ41JLgXSjlRCFaCqvXfJhIChTsFoBCulUUt297_bENF2PzS7ajhu5w_UL5PATAk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computation complexity of branch-and-bound model selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thakoor, Ninad ; Devarajan, Venkat ; Gao, Jean</creator><creatorcontrib>Thakoor, Ninad ; Devarajan, Venkat ; Gao, Jean</creatorcontrib><description>Segmentation problems are one of the most important areas of research in computer vision. While segmentation problems are generally solved with clustering paradigms, they formulate the problem as recursive. Additionally, most approaches need the number of clusters to be known beforehand. This requirement is unreasonable for majority of the computer vision problems. This paper analyzes the model selection perspective which can overcome these limitations. Under this framework multiple hypotheses for cluster centers are generated using spatially coherent sampling. An optimal subset of these hypotheses is selected according to a model selection criterion. The selection can be carried out with a branch-and-bound procedure. The worst case complexity of any branch-and-bound algorithm is exponential. However, the average complexity of the algorithm is significantly lower. In this paper, we develop a framework for analysis of average complexity of the algorithm from the statistics of model selection costs.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459420</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Computational complexity ; Computer science ; Computer vision ; Cost function ; Image segmentation ; Motion segmentation ; Sampling methods ; Spatial coherence</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.1895-1900</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thakoor, Ninad</creatorcontrib><creatorcontrib>Devarajan, Venkat</creatorcontrib><creatorcontrib>Gao, Jean</creatorcontrib><title>Computation complexity of branch-and-bound model selection</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>Segmentation problems are one of the most important areas of research in computer vision. While segmentation problems are generally solved with clustering paradigms, they formulate the problem as recursive. Additionally, most approaches need the number of clusters to be known beforehand. This requirement is unreasonable for majority of the computer vision problems. This paper analyzes the model selection perspective which can overcome these limitations. Under this framework multiple hypotheses for cluster centers are generated using spatially coherent sampling. An optimal subset of these hypotheses is selected according to a model selection criterion. The selection can be carried out with a branch-and-bound procedure. The worst case complexity of any branch-and-bound algorithm is exponential. However, the average complexity of the algorithm is significantly lower. In this paper, we develop a framework for analysis of average complexity of the algorithm from the statistics of model selection costs.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Cost function</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Sampling methods</subject><subject>Spatial coherence</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLw0AUhccXmNb-AHGTPzDxzuPOw50EH4WCG3Vbkpk7GEmTkqRg_70VczbnwHc4i8PYrYBCCPD367L8LCSAL1Cj1xLO2EJoqU8SHs9ZJpUDbhH0BVt562YmAS9ZJhCBo_b-mi3G8RtAeelMxh7Kfrc_TNXU9F0eTrmln2Y65n3K66Hqwhevusjr_tDFfNdHavORWgp_9Rt2lap2pNXsS_bx_PRevvLN28u6fNzwRlicuBYCa7AikImBVEQfCZQmZ41JLgXSjlRCFaCqvXfJhIChTsFoBCulUUt297_bENF2PzS7ajhu5w_UL5PATAk</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Thakoor, Ninad</creator><creator>Devarajan, Venkat</creator><creator>Gao, Jean</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Computation complexity of branch-and-bound model selection</title><author>Thakoor, Ninad ; Devarajan, Venkat ; Gao, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4115b071ce6dce3d59de034e8766f8fce48e3f53c0ab998f6cc5cbfc645072263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Cost function</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Sampling methods</topic><topic>Spatial coherence</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakoor, Ninad</creatorcontrib><creatorcontrib>Devarajan, Venkat</creatorcontrib><creatorcontrib>Gao, Jean</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thakoor, Ninad</au><au>Devarajan, Venkat</au><au>Gao, Jean</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computation complexity of branch-and-bound model selection</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>1895</spage><epage>1900</epage><pages>1895-1900</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>Segmentation problems are one of the most important areas of research in computer vision. While segmentation problems are generally solved with clustering paradigms, they formulate the problem as recursive. Additionally, most approaches need the number of clusters to be known beforehand. This requirement is unreasonable for majority of the computer vision problems. This paper analyzes the model selection perspective which can overcome these limitations. Under this framework multiple hypotheses for cluster centers are generated using spatially coherent sampling. An optimal subset of these hypotheses is selected according to a model selection criterion. The selection can be carried out with a branch-and-bound procedure. The worst case complexity of any branch-and-bound algorithm is exponential. However, the average complexity of the algorithm is significantly lower. In this paper, we develop a framework for analysis of average complexity of the algorithm from the statistics of model selection costs.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459420</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2009 IEEE 12th International Conference on Computer Vision, 2009, p.1895-1900
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_5459420
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Computational complexity
Computer science
Computer vision
Cost function
Image segmentation
Motion segmentation
Sampling methods
Spatial coherence
title Computation complexity of branch-and-bound model selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computation%20complexity%20of%20branch-and-bound%20model%20selection&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Thakoor,%20Ninad&rft.date=2009-09&rft.spage=1895&rft.epage=1900&rft.pages=1895-1900&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459420&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&rft_dat=%3Cieee_6IE%3E5459420%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4115b071ce6dce3d59de034e8766f8fce48e3f53c0ab998f6cc5cbfc645072263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459420&rfr_iscdi=true