Loading…
Optimal control for sucrose crystallization with heuristic dynamic programming
This paper applies a neural-network-based approximate dynamic programming (ADP) method, namely, heuristic dynamic programming (HDP), to an industrial sucrose crystallization optimal control problem. The industrial sucrose crystallization is a nonlinear and slow time-varying process. It is quite diff...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 278 |
container_issue | |
container_start_page | 273 |
container_title | |
container_volume | |
creator | Xiaofeng Lin Heng Zhang Huixia Liu Chunning Song |
description | This paper applies a neural-network-based approximate dynamic programming (ADP) method, namely, heuristic dynamic programming (HDP), to an industrial sucrose crystallization optimal control problem. The industrial sucrose crystallization is a nonlinear and slow time-varying process. It is quite difficult to establish a precise mechanism model of the crystallization, because of complex internal mechanism and interacting variables. We developed a neural network model of the crystallization based on the data from the actual sugar boiling process of sugar factory. HDP is a learning- and approximation-based approach which can solve the optimization control problem of nonlinear system. This paper covers the basic principle of this learning scheme and the design of neural network controller based on the approach. The result of simulation shows the controller based on heuristic dynamic programming approach can optimize industrial sucrose crystallization. |
doi_str_mv | 10.1109/ICNSC.2010.5461486 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5461486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5461486</ieee_id><sourcerecordid>5461486</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f5cb4570ebf776bca772acab35c17982e992920dd87b5f2b7e9da5e4c0252b4b3</originalsourceid><addsrcrecordid>eNpFj8tKAzEARSMiqLU_oJv8wNQkk8dkKYOPQmkXdl-STNJGMpMhSZHx6x2w4N0czubCAeARoxXGSD6v2-1nuyJodkY5pg2_AveYEko5ZTW__heEb8Ey5y80jzKCBb8D291YfK8CNHEoKQboYoL5bFLMFpo05aJC8D-q-DjAb19O8GTPyefiDeymQfUzxxSPSfW9H44P4MapkO3ywgXYv73u249qs3tfty-byktUKseMpkwgq50QXBslBFFG6ZoZLGRDrJREEtR1jdDMES2s7BSz1CDCiKa6XoCnv1tvrT2MaS5I0-GSX_8CEUJQ7w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal control for sucrose crystallization with heuristic dynamic programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaofeng Lin ; Heng Zhang ; Huixia Liu ; Chunning Song</creator><creatorcontrib>Xiaofeng Lin ; Heng Zhang ; Huixia Liu ; Chunning Song</creatorcontrib><description>This paper applies a neural-network-based approximate dynamic programming (ADP) method, namely, heuristic dynamic programming (HDP), to an industrial sucrose crystallization optimal control problem. The industrial sucrose crystallization is a nonlinear and slow time-varying process. It is quite difficult to establish a precise mechanism model of the crystallization, because of complex internal mechanism and interacting variables. We developed a neural network model of the crystallization based on the data from the actual sugar boiling process of sugar factory. HDP is a learning- and approximation-based approach which can solve the optimization control problem of nonlinear system. This paper covers the basic principle of this learning scheme and the design of neural network controller based on the approach. The result of simulation shows the controller based on heuristic dynamic programming approach can optimize industrial sucrose crystallization.</description><identifier>ISBN: 1424464501</identifier><identifier>ISBN: 9781424464500</identifier><identifier>EISBN: 1424464536</identifier><identifier>EISBN: 9781424464524</identifier><identifier>EISBN: 9781424464531</identifier><identifier>EISBN: 1424464528</identifier><identifier>DOI: 10.1109/ICNSC.2010.5461486</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Crystallization ; Dynamic programming ; Industrial control ; Neural networks ; Nonlinear control systems ; Nonlinear systems ; Optimal control ; Production facilities ; Sugar industry</subject><ispartof>2010 International Conference on Networking, Sensing and Control (ICNSC), 2010, p.273-278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5461486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5461486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaofeng Lin</creatorcontrib><creatorcontrib>Heng Zhang</creatorcontrib><creatorcontrib>Huixia Liu</creatorcontrib><creatorcontrib>Chunning Song</creatorcontrib><title>Optimal control for sucrose crystallization with heuristic dynamic programming</title><title>2010 International Conference on Networking, Sensing and Control (ICNSC)</title><addtitle>ICNSC</addtitle><description>This paper applies a neural-network-based approximate dynamic programming (ADP) method, namely, heuristic dynamic programming (HDP), to an industrial sucrose crystallization optimal control problem. The industrial sucrose crystallization is a nonlinear and slow time-varying process. It is quite difficult to establish a precise mechanism model of the crystallization, because of complex internal mechanism and interacting variables. We developed a neural network model of the crystallization based on the data from the actual sugar boiling process of sugar factory. HDP is a learning- and approximation-based approach which can solve the optimization control problem of nonlinear system. This paper covers the basic principle of this learning scheme and the design of neural network controller based on the approach. The result of simulation shows the controller based on heuristic dynamic programming approach can optimize industrial sucrose crystallization.</description><subject>Control systems</subject><subject>Crystallization</subject><subject>Dynamic programming</subject><subject>Industrial control</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Production facilities</subject><subject>Sugar industry</subject><isbn>1424464501</isbn><isbn>9781424464500</isbn><isbn>1424464536</isbn><isbn>9781424464524</isbn><isbn>9781424464531</isbn><isbn>1424464528</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj8tKAzEARSMiqLU_oJv8wNQkk8dkKYOPQmkXdl-STNJGMpMhSZHx6x2w4N0czubCAeARoxXGSD6v2-1nuyJodkY5pg2_AveYEko5ZTW__heEb8Ey5y80jzKCBb8D291YfK8CNHEoKQboYoL5bFLMFpo05aJC8D-q-DjAb19O8GTPyefiDeymQfUzxxSPSfW9H44P4MapkO3ywgXYv73u249qs3tfty-byktUKseMpkwgq50QXBslBFFG6ZoZLGRDrJREEtR1jdDMES2s7BSz1CDCiKa6XoCnv1tvrT2MaS5I0-GSX_8CEUJQ7w</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Xiaofeng Lin</creator><creator>Heng Zhang</creator><creator>Huixia Liu</creator><creator>Chunning Song</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Optimal control for sucrose crystallization with heuristic dynamic programming</title><author>Xiaofeng Lin ; Heng Zhang ; Huixia Liu ; Chunning Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f5cb4570ebf776bca772acab35c17982e992920dd87b5f2b7e9da5e4c0252b4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Control systems</topic><topic>Crystallization</topic><topic>Dynamic programming</topic><topic>Industrial control</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Production facilities</topic><topic>Sugar industry</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaofeng Lin</creatorcontrib><creatorcontrib>Heng Zhang</creatorcontrib><creatorcontrib>Huixia Liu</creatorcontrib><creatorcontrib>Chunning Song</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaofeng Lin</au><au>Heng Zhang</au><au>Huixia Liu</au><au>Chunning Song</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal control for sucrose crystallization with heuristic dynamic programming</atitle><btitle>2010 International Conference on Networking, Sensing and Control (ICNSC)</btitle><stitle>ICNSC</stitle><date>2010-04</date><risdate>2010</risdate><spage>273</spage><epage>278</epage><pages>273-278</pages><isbn>1424464501</isbn><isbn>9781424464500</isbn><eisbn>1424464536</eisbn><eisbn>9781424464524</eisbn><eisbn>9781424464531</eisbn><eisbn>1424464528</eisbn><abstract>This paper applies a neural-network-based approximate dynamic programming (ADP) method, namely, heuristic dynamic programming (HDP), to an industrial sucrose crystallization optimal control problem. The industrial sucrose crystallization is a nonlinear and slow time-varying process. It is quite difficult to establish a precise mechanism model of the crystallization, because of complex internal mechanism and interacting variables. We developed a neural network model of the crystallization based on the data from the actual sugar boiling process of sugar factory. HDP is a learning- and approximation-based approach which can solve the optimization control problem of nonlinear system. This paper covers the basic principle of this learning scheme and the design of neural network controller based on the approach. The result of simulation shows the controller based on heuristic dynamic programming approach can optimize industrial sucrose crystallization.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2010.5461486</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424464501 |
ispartof | 2010 International Conference on Networking, Sensing and Control (ICNSC), 2010, p.273-278 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5461486 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Crystallization Dynamic programming Industrial control Neural networks Nonlinear control systems Nonlinear systems Optimal control Production facilities Sugar industry |
title | Optimal control for sucrose crystallization with heuristic dynamic programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20control%20for%20sucrose%20crystallization%20with%20heuristic%20dynamic%20programming&rft.btitle=2010%20International%20Conference%20on%20Networking,%20Sensing%20and%20Control%20(ICNSC)&rft.au=Xiaofeng%20Lin&rft.date=2010-04&rft.spage=273&rft.epage=278&rft.pages=273-278&rft.isbn=1424464501&rft.isbn_list=9781424464500&rft_id=info:doi/10.1109/ICNSC.2010.5461486&rft.eisbn=1424464536&rft.eisbn_list=9781424464524&rft.eisbn_list=9781424464531&rft.eisbn_list=1424464528&rft_dat=%3Cieee_6IE%3E5461486%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f5cb4570ebf776bca772acab35c17982e992920dd87b5f2b7e9da5e4c0252b4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5461486&rfr_iscdi=true |