Loading…
An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation
A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability a...
Saved in:
Published in: | IEEE transactions on antennas and propagation 1996-12, Vol.44 (12), p.1592-1599 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3 |
container_end_page | 1599 |
container_issue | 12 |
container_start_page | 1592 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 44 |
creator | Dockery, D. Kuttler, J.R. |
description | A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance. |
doi_str_mv | 10.1109/8.546245 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_546245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>546245</ieee_id><sourcerecordid>26241900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKfg2VNO4qWatEn6ehzDqTDwouCtpOmLi3RNl7QT_3s7Orx6er_H7-PB-wi55uyec1Y8wL0UKhXyhMy4lJCkacpPyYwxDkmRqo9zchHj17gKEGJGNouWum0X_B7rQ8BatwaTyg9trcMP1c2nD67fbKn1ga78EBwGGrvG9UnssaPRN0PvfBupt7TfIO100JVvnKHfeo8Ud4M-9JfkzOom4tVxzsn76vFt-ZysX59elot1YjKm-qQuqkIKUwPIrAZZ5UpoULlUqHmOhcEaCptJq0BlIKzRmKnKqNxaqw2Azebkdro7_rQbMPbl1kWDTaNb9EMsUxA8zyH7Hxwt8oKxEbybQBN8jAFt2QW3HeWUnJUH5yWUk_MRvZlQh4h_2LH8BT7Hfl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26241900</pqid></control><display><type>article</type><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dockery, D. ; Kuttler, J.R.</creator><creatorcontrib>Dockery, D. ; Kuttler, J.R.</creatorcontrib><description>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.546245</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic propagation ; Fourier transforms ; Optical surface waves ; Partial differential equations ; Robustness ; Rough surfaces ; Sea surface ; Surface impedance ; Surface roughness ; Surface waves</subject><ispartof>IEEE transactions on antennas and propagation, 1996-12, Vol.44 (12), p.1592-1599</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</citedby><cites>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/546245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Dockery, D.</creatorcontrib><creatorcontrib>Kuttler, J.R.</creatorcontrib><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</description><subject>Electromagnetic propagation</subject><subject>Fourier transforms</subject><subject>Optical surface waves</subject><subject>Partial differential equations</subject><subject>Robustness</subject><subject>Rough surfaces</subject><subject>Sea surface</subject><subject>Surface impedance</subject><subject>Surface roughness</subject><subject>Surface waves</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKfg2VNO4qWatEn6ehzDqTDwouCtpOmLi3RNl7QT_3s7Orx6er_H7-PB-wi55uyec1Y8wL0UKhXyhMy4lJCkacpPyYwxDkmRqo9zchHj17gKEGJGNouWum0X_B7rQ8BatwaTyg9trcMP1c2nD67fbKn1ga78EBwGGrvG9UnssaPRN0PvfBupt7TfIO100JVvnKHfeo8Ud4M-9JfkzOom4tVxzsn76vFt-ZysX59elot1YjKm-qQuqkIKUwPIrAZZ5UpoULlUqHmOhcEaCptJq0BlIKzRmKnKqNxaqw2Azebkdro7_rQbMPbl1kWDTaNb9EMsUxA8zyH7Hxwt8oKxEbybQBN8jAFt2QW3HeWUnJUH5yWUk_MRvZlQh4h_2LH8BT7Hfl4</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Dockery, D.</creator><creator>Kuttler, J.R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19961201</creationdate><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><author>Dockery, D. ; Kuttler, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Electromagnetic propagation</topic><topic>Fourier transforms</topic><topic>Optical surface waves</topic><topic>Partial differential equations</topic><topic>Robustness</topic><topic>Rough surfaces</topic><topic>Sea surface</topic><topic>Surface impedance</topic><topic>Surface roughness</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dockery, D.</creatorcontrib><creatorcontrib>Kuttler, J.R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dockery, D.</au><au>Kuttler, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1996-12-01</date><risdate>1996</risdate><volume>44</volume><issue>12</issue><spage>1592</spage><epage>1599</epage><pages>1592-1599</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</abstract><pub>IEEE</pub><doi>10.1109/8.546245</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 1996-12, Vol.44 (12), p.1592-1599 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_546245 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Electromagnetic propagation Fourier transforms Optical surface waves Partial differential equations Robustness Rough surfaces Sea surface Surface impedance Surface roughness Surface waves |
title | An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20impedance-boundary%20algorithm%20for%20Fourier%20split-step%20solutions%20of%20the%20parabolic%20wave%20equation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dockery,%20D.&rft.date=1996-12-01&rft.volume=44&rft.issue=12&rft.spage=1592&rft.epage=1599&rft.pages=1592-1599&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.546245&rft_dat=%3Cproquest_ieee_%3E26241900%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26241900&rft_id=info:pmid/&rft_ieee_id=546245&rfr_iscdi=true |