Loading…

An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation

A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 1996-12, Vol.44 (12), p.1592-1599
Main Authors: Dockery, D., Kuttler, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3
cites cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3
container_end_page 1599
container_issue 12
container_start_page 1592
container_title IEEE transactions on antennas and propagation
container_volume 44
creator Dockery, D.
Kuttler, J.R.
description A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.
doi_str_mv 10.1109/8.546245
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_546245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>546245</ieee_id><sourcerecordid>26241900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKfg2VNO4qWatEn6ehzDqTDwouCtpOmLi3RNl7QT_3s7Orx6er_H7-PB-wi55uyec1Y8wL0UKhXyhMy4lJCkacpPyYwxDkmRqo9zchHj17gKEGJGNouWum0X_B7rQ8BatwaTyg9trcMP1c2nD67fbKn1ga78EBwGGrvG9UnssaPRN0PvfBupt7TfIO100JVvnKHfeo8Ud4M-9JfkzOom4tVxzsn76vFt-ZysX59elot1YjKm-qQuqkIKUwPIrAZZ5UpoULlUqHmOhcEaCptJq0BlIKzRmKnKqNxaqw2Azebkdro7_rQbMPbl1kWDTaNb9EMsUxA8zyH7Hxwt8oKxEbybQBN8jAFt2QW3HeWUnJUH5yWUk_MRvZlQh4h_2LH8BT7Hfl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26241900</pqid></control><display><type>article</type><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dockery, D. ; Kuttler, J.R.</creator><creatorcontrib>Dockery, D. ; Kuttler, J.R.</creatorcontrib><description>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.546245</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic propagation ; Fourier transforms ; Optical surface waves ; Partial differential equations ; Robustness ; Rough surfaces ; Sea surface ; Surface impedance ; Surface roughness ; Surface waves</subject><ispartof>IEEE transactions on antennas and propagation, 1996-12, Vol.44 (12), p.1592-1599</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</citedby><cites>FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/546245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Dockery, D.</creatorcontrib><creatorcontrib>Kuttler, J.R.</creatorcontrib><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</description><subject>Electromagnetic propagation</subject><subject>Fourier transforms</subject><subject>Optical surface waves</subject><subject>Partial differential equations</subject><subject>Robustness</subject><subject>Rough surfaces</subject><subject>Sea surface</subject><subject>Surface impedance</subject><subject>Surface roughness</subject><subject>Surface waves</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKfg2VNO4qWatEn6ehzDqTDwouCtpOmLi3RNl7QT_3s7Orx6er_H7-PB-wi55uyec1Y8wL0UKhXyhMy4lJCkacpPyYwxDkmRqo9zchHj17gKEGJGNouWum0X_B7rQ8BatwaTyg9trcMP1c2nD67fbKn1ga78EBwGGrvG9UnssaPRN0PvfBupt7TfIO100JVvnKHfeo8Ud4M-9JfkzOom4tVxzsn76vFt-ZysX59elot1YjKm-qQuqkIKUwPIrAZZ5UpoULlUqHmOhcEaCptJq0BlIKzRmKnKqNxaqw2Azebkdro7_rQbMPbl1kWDTaNb9EMsUxA8zyH7Hxwt8oKxEbybQBN8jAFt2QW3HeWUnJUH5yWUk_MRvZlQh4h_2LH8BT7Hfl4</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Dockery, D.</creator><creator>Kuttler, J.R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19961201</creationdate><title>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</title><author>Dockery, D. ; Kuttler, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Electromagnetic propagation</topic><topic>Fourier transforms</topic><topic>Optical surface waves</topic><topic>Partial differential equations</topic><topic>Robustness</topic><topic>Rough surfaces</topic><topic>Sea surface</topic><topic>Surface impedance</topic><topic>Surface roughness</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dockery, D.</creatorcontrib><creatorcontrib>Kuttler, J.R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dockery, D.</au><au>Kuttler, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1996-12-01</date><risdate>1996</risdate><volume>44</volume><issue>12</issue><spage>1592</spage><epage>1599</epage><pages>1592-1599</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A new implementation of the previously published mixed Fourier transform (MFT) method for including impedance boundaries in split-step parabolic equation solutions is described and demonstrated. The new algorithm is formulated entirely in the discrete domain which results in extended applicability and increased computation speed. A brief review of the original MFT solution is followed by a detailed description of the discrete formulation. The performance of the new algorithm is then demonstrated with a few examples which rely heavily on the accuracy of the impedance boundary. These examples include 10 MHz surface wave propagation over smooth and rough sea surfaces and 10 GHz calculations utilizing an effective rough surface impedance.</abstract><pub>IEEE</pub><doi>10.1109/8.546245</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 1996-12, Vol.44 (12), p.1592-1599
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_546245
source IEEE Electronic Library (IEL) Journals
subjects Electromagnetic propagation
Fourier transforms
Optical surface waves
Partial differential equations
Robustness
Rough surfaces
Sea surface
Surface impedance
Surface roughness
Surface waves
title An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20impedance-boundary%20algorithm%20for%20Fourier%20split-step%20solutions%20of%20the%20parabolic%20wave%20equation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dockery,%20D.&rft.date=1996-12-01&rft.volume=44&rft.issue=12&rft.spage=1592&rft.epage=1599&rft.pages=1592-1599&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.546245&rft_dat=%3Cproquest_ieee_%3E26241900%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-d9b954cd8853d85b764a86756ea17e9ced89f35f686384fcae36bc67fffac88f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26241900&rft_id=info:pmid/&rft_ieee_id=546245&rfr_iscdi=true