Loading…

Fault diagnosis in IP networks via multicast probing: Noisy measurements

In this paper, we address network fault diagnosis using multicast-based probing where probes are susceptible to measurement errors. The problem is inspired by and relevant to multicast-based IPTV services being heavily deployed by telecom operators around the world. Specifically, we extend the ¿nois...

Full description

Saved in:
Bibliographic Details
Main Authors: Rege, Kiran M, Nagarajan, Ramesh, Akyamac, Ahmet A
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Rege, Kiran M
Nagarajan, Ramesh
Akyamac, Ahmet A
description In this paper, we address network fault diagnosis using multicast-based probing where probes are susceptible to measurement errors. The problem is inspired by and relevant to multicast-based IPTV services being heavily deployed by telecom operators around the world. Specifically, we extend the ¿noiseless¿ disjunctive fault model for multicast-based probing presented in to include measurement errors, and derive key results concerning the most probable fault scenario and the most likely fault given the observed probe values. We show that the generalization to include measurement errors adds a fixed amount of overhead per computational step. These results provide a basis, in the face of potential probe measurement errors, for efficient computational procedures to determine the nodes that are most likely to have been in a faulty state and can be used as part of test strategies for network fault diagnosis. Our procedures exploit the underlying structure of the multicast tree and are significantly more efficient than generic computational procedures for probabilistic inference. They can form the basis for accurate and timely fault diagnosis and service quality resolution procedures as part of performance management and customer care systems respectively.
doi_str_mv 10.1109/SARNOF.2010.5469699
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5469699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469699</ieee_id><sourcerecordid>5469699</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4f978958f764e6776d65f3b419448f7bc8de1e67ddf55a6790b601d6290acf5a3</originalsourceid><addsrcrecordid>eNpFUF1rwjAUzRjCpvMX-JI_oLtJ89G7N5F1CqJj813SJpFstpWmbvjvDUzYeTmcDy6XQ8iEwYwxwOfP-cdmW8w4JEMKhQrxjgyZ4EJIiULc_wueD8iQAyAyUJg_kHGMX5AgJJeZfiTLwpyPPbXBHJo2hkhDQ1fvtHH9b9t9R_oTDK1TI1Qm9vTUtWVoDi9004Z4obUz8dy52jV9fCIDb47RjW88IrvidbdYTtfbt9Vivp4GhH4qPOocZe61Ek5praySPisFS28ns6xy61gKrPVSGqURSgXMKo5gKi9NNiKTv7PBObc_daE23WV_WyG7ArEXT1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis in IP networks via multicast probing: Noisy measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rege, Kiran M ; Nagarajan, Ramesh ; Akyamac, Ahmet A</creator><creatorcontrib>Rege, Kiran M ; Nagarajan, Ramesh ; Akyamac, Ahmet A</creatorcontrib><description>In this paper, we address network fault diagnosis using multicast-based probing where probes are susceptible to measurement errors. The problem is inspired by and relevant to multicast-based IPTV services being heavily deployed by telecom operators around the world. Specifically, we extend the ¿noiseless¿ disjunctive fault model for multicast-based probing presented in to include measurement errors, and derive key results concerning the most probable fault scenario and the most likely fault given the observed probe values. We show that the generalization to include measurement errors adds a fixed amount of overhead per computational step. These results provide a basis, in the face of potential probe measurement errors, for efficient computational procedures to determine the nodes that are most likely to have been in a faulty state and can be used as part of test strategies for network fault diagnosis. Our procedures exploit the underlying structure of the multicast tree and are significantly more efficient than generic computational procedures for probabilistic inference. They can form the basis for accurate and timely fault diagnosis and service quality resolution procedures as part of performance management and customer care systems respectively.</description><identifier>ISBN: 1424455928</identifier><identifier>ISBN: 9781424455928</identifier><identifier>EISBN: 1424455944</identifier><identifier>EISBN: 9781424455942</identifier><identifier>EISBN: 1424455936</identifier><identifier>EISBN: 9781424455935</identifier><identifier>DOI: 10.1109/SARNOF.2010.5469699</identifier><identifier>LCCN: 2009910698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Bayesian ; belief propagation ; Bioinformatics ; Diseases ; Fault diagnosis ; Gene expression ; Genomics ; Humans ; IP networks ; most probable explanation ; multicast ; noisy OR ; probing ; Proteins ; Spatial databases</subject><ispartof>2010 IEEE Sarnoff Symposium, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rege, Kiran M</creatorcontrib><creatorcontrib>Nagarajan, Ramesh</creatorcontrib><creatorcontrib>Akyamac, Ahmet A</creatorcontrib><title>Fault diagnosis in IP networks via multicast probing: Noisy measurements</title><title>2010 IEEE Sarnoff Symposium</title><addtitle>SARNOF</addtitle><description>In this paper, we address network fault diagnosis using multicast-based probing where probes are susceptible to measurement errors. The problem is inspired by and relevant to multicast-based IPTV services being heavily deployed by telecom operators around the world. Specifically, we extend the ¿noiseless¿ disjunctive fault model for multicast-based probing presented in to include measurement errors, and derive key results concerning the most probable fault scenario and the most likely fault given the observed probe values. We show that the generalization to include measurement errors adds a fixed amount of overhead per computational step. These results provide a basis, in the face of potential probe measurement errors, for efficient computational procedures to determine the nodes that are most likely to have been in a faulty state and can be used as part of test strategies for network fault diagnosis. Our procedures exploit the underlying structure of the multicast tree and are significantly more efficient than generic computational procedures for probabilistic inference. They can form the basis for accurate and timely fault diagnosis and service quality resolution procedures as part of performance management and customer care systems respectively.</description><subject>Aging</subject><subject>Bayesian</subject><subject>belief propagation</subject><subject>Bioinformatics</subject><subject>Diseases</subject><subject>Fault diagnosis</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Humans</subject><subject>IP networks</subject><subject>most probable explanation</subject><subject>multicast</subject><subject>noisy OR</subject><subject>probing</subject><subject>Proteins</subject><subject>Spatial databases</subject><isbn>1424455928</isbn><isbn>9781424455928</isbn><isbn>1424455944</isbn><isbn>9781424455942</isbn><isbn>1424455936</isbn><isbn>9781424455935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUF1rwjAUzRjCpvMX-JI_oLtJ89G7N5F1CqJj813SJpFstpWmbvjvDUzYeTmcDy6XQ8iEwYwxwOfP-cdmW8w4JEMKhQrxjgyZ4EJIiULc_wueD8iQAyAyUJg_kHGMX5AgJJeZfiTLwpyPPbXBHJo2hkhDQ1fvtHH9b9t9R_oTDK1TI1Qm9vTUtWVoDi9004Z4obUz8dy52jV9fCIDb47RjW88IrvidbdYTtfbt9Vivp4GhH4qPOocZe61Ek5praySPisFS28ns6xy61gKrPVSGqURSgXMKo5gKi9NNiKTv7PBObc_daE23WV_WyG7ArEXT1w</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Rege, Kiran M</creator><creator>Nagarajan, Ramesh</creator><creator>Akyamac, Ahmet A</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Fault diagnosis in IP networks via multicast probing: Noisy measurements</title><author>Rege, Kiran M ; Nagarajan, Ramesh ; Akyamac, Ahmet A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4f978958f764e6776d65f3b419448f7bc8de1e67ddf55a6790b601d6290acf5a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aging</topic><topic>Bayesian</topic><topic>belief propagation</topic><topic>Bioinformatics</topic><topic>Diseases</topic><topic>Fault diagnosis</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Humans</topic><topic>IP networks</topic><topic>most probable explanation</topic><topic>multicast</topic><topic>noisy OR</topic><topic>probing</topic><topic>Proteins</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Rege, Kiran M</creatorcontrib><creatorcontrib>Nagarajan, Ramesh</creatorcontrib><creatorcontrib>Akyamac, Ahmet A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rege, Kiran M</au><au>Nagarajan, Ramesh</au><au>Akyamac, Ahmet A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis in IP networks via multicast probing: Noisy measurements</atitle><btitle>2010 IEEE Sarnoff Symposium</btitle><stitle>SARNOF</stitle><date>2010-04</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424455928</isbn><isbn>9781424455928</isbn><eisbn>1424455944</eisbn><eisbn>9781424455942</eisbn><eisbn>1424455936</eisbn><eisbn>9781424455935</eisbn><abstract>In this paper, we address network fault diagnosis using multicast-based probing where probes are susceptible to measurement errors. The problem is inspired by and relevant to multicast-based IPTV services being heavily deployed by telecom operators around the world. Specifically, we extend the ¿noiseless¿ disjunctive fault model for multicast-based probing presented in to include measurement errors, and derive key results concerning the most probable fault scenario and the most likely fault given the observed probe values. We show that the generalization to include measurement errors adds a fixed amount of overhead per computational step. These results provide a basis, in the face of potential probe measurement errors, for efficient computational procedures to determine the nodes that are most likely to have been in a faulty state and can be used as part of test strategies for network fault diagnosis. Our procedures exploit the underlying structure of the multicast tree and are significantly more efficient than generic computational procedures for probabilistic inference. They can form the basis for accurate and timely fault diagnosis and service quality resolution procedures as part of performance management and customer care systems respectively.</abstract><pub>IEEE</pub><doi>10.1109/SARNOF.2010.5469699</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424455928
ispartof 2010 IEEE Sarnoff Symposium, 2010, p.1-6
issn
language eng
recordid cdi_ieee_primary_5469699
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aging
Bayesian
belief propagation
Bioinformatics
Diseases
Fault diagnosis
Gene expression
Genomics
Humans
IP networks
most probable explanation
multicast
noisy OR
probing
Proteins
Spatial databases
title Fault diagnosis in IP networks via multicast probing: Noisy measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20in%20IP%20networks%20via%20multicast%20probing:%20Noisy%20measurements&rft.btitle=2010%20IEEE%20Sarnoff%20Symposium&rft.au=Rege,%20Kiran%20M&rft.date=2010-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424455928&rft.isbn_list=9781424455928&rft_id=info:doi/10.1109/SARNOF.2010.5469699&rft.eisbn=1424455944&rft.eisbn_list=9781424455942&rft.eisbn_list=1424455936&rft.eisbn_list=9781424455935&rft_dat=%3Cieee_6IE%3E5469699%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4f978958f764e6776d65f3b419448f7bc8de1e67ddf55a6790b601d6290acf5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469699&rfr_iscdi=true