Loading…
Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data
Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1691 |
container_issue | |
container_start_page | 1687 |
container_title | |
container_volume | |
creator | Pawley, Norma H Myers, Kary L Galbraith, John M Brumby, Steven P |
description | Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target. |
doi_str_mv | 10.1109/ACSSC.2009.5469701 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5469701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469701</ieee_id><sourcerecordid>5469701</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1341-433f2d181a20d83482648acfade7e9cd734f5de898f080650c61ce9245be7fbe3</originalsourceid><addsrcrecordid>eNo1kElOAzEURM0kEUIuABtfoIPHbptd1AqDFIlFYB1-7O_EqCe5nUVuD4hQm1o8qaRXhNxxNuec2YdFvV7Xc8GYnWtV2orxMzKzleFKKKWNKNU5mQhdlYWQTF6Qm3-g2SWZcKZNUUorr8lsHL_YT5QWVooJ-axhyIcUux31xw7a6Ebad7Q9NDkODdIcW6SjgwbHR7qg--M2RU9hGFIPbk9Dn6hrDjljQk-xQZdT38Kuwxwd9ZDhllwFaEacnXpKPp6W7_VLsXp7fq0XqyJyqXihpAzCc8NBMG-k-lUy4AJ4rNA6X0kVtEdjTWCGlZq5kju0QuktVmGLckru_3YjIm6GFFtIx83pLPkNpTtafw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><source>IEEE Xplore All Conference Series</source><creator>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</creator><creatorcontrib>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</creatorcontrib><description>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424458250</identifier><identifier>ISBN: 9781424458257</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424458264</identifier><identifier>EISBN: 1424458277</identifier><identifier>EISBN: 1424458269</identifier><identifier>EISBN: 9781424458271</identifier><identifier>DOI: 10.1109/ACSSC.2009.5469701</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Chirp ; Feature extraction ; Machine learning ; Machine learning algorithms ; Noise level ; Noise robustness ; Signal analysis ; Signal processing ; White noise</subject><ispartof>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1687-1691</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawley, Norma H</creatorcontrib><creatorcontrib>Myers, Kary L</creatorcontrib><creatorcontrib>Galbraith, John M</creatorcontrib><creatorcontrib>Brumby, Steven P</creatorcontrib><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><title>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</description><subject>Algorithm design and analysis</subject><subject>Chirp</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Noise level</subject><subject>Noise robustness</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>White noise</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424458250</isbn><isbn>9781424458257</isbn><isbn>9781424458264</isbn><isbn>1424458277</isbn><isbn>1424458269</isbn><isbn>9781424458271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kElOAzEURM0kEUIuABtfoIPHbptd1AqDFIlFYB1-7O_EqCe5nUVuD4hQm1o8qaRXhNxxNuec2YdFvV7Xc8GYnWtV2orxMzKzleFKKKWNKNU5mQhdlYWQTF6Qm3-g2SWZcKZNUUorr8lsHL_YT5QWVooJ-axhyIcUux31xw7a6Ebad7Q9NDkODdIcW6SjgwbHR7qg--M2RU9hGFIPbk9Dn6hrDjljQk-xQZdT38Kuwxwd9ZDhllwFaEacnXpKPp6W7_VLsXp7fq0XqyJyqXihpAzCc8NBMG-k-lUy4AJ4rNA6X0kVtEdjTWCGlZq5kju0QuktVmGLckru_3YjIm6GFFtIx83pLPkNpTtafw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Pawley, Norma H</creator><creator>Myers, Kary L</creator><creator>Galbraith, John M</creator><creator>Brumby, Steven P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><author>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1341-433f2d181a20d83482648acfade7e9cd734f5de898f080650c61ce9245be7fbe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Chirp</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Noise level</topic><topic>Noise robustness</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Pawley, Norma H</creatorcontrib><creatorcontrib>Myers, Kary L</creatorcontrib><creatorcontrib>Galbraith, John M</creatorcontrib><creatorcontrib>Brumby, Steven P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawley, Norma H</au><au>Myers, Kary L</au><au>Galbraith, John M</au><au>Brumby, Steven P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</atitle><btitle>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2009-11</date><risdate>2009</risdate><spage>1687</spage><epage>1691</epage><pages>1687-1691</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424458250</isbn><isbn>9781424458257</isbn><eisbn>9781424458264</eisbn><eisbn>1424458277</eisbn><eisbn>1424458269</eisbn><eisbn>9781424458271</eisbn><abstract>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2009.5469701</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1687-1691 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_5469701 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Chirp Feature extraction Machine learning Machine learning algorithms Noise level Noise robustness Signal analysis Signal processing White noise |
title | Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Capturing%20dynamics%20on%20multiple%20time%20scales:%20A%20hybrid%20approach%20for%20cluttered%20electromagnetic%20data&rft.btitle=2009%20Conference%20Record%20of%20the%20Forty-Third%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Pawley,%20Norma%20H&rft.date=2009-11&rft.spage=1687&rft.epage=1691&rft.pages=1687-1691&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424458250&rft.isbn_list=9781424458257&rft_id=info:doi/10.1109/ACSSC.2009.5469701&rft.eisbn=9781424458264&rft.eisbn_list=1424458277&rft.eisbn_list=1424458269&rft.eisbn_list=9781424458271&rft_dat=%3Cieee_CHZPO%3E5469701%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1341-433f2d181a20d83482648acfade7e9cd734f5de898f080650c61ce9245be7fbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469701&rfr_iscdi=true |