Loading…

Crowdsourced radiomap for room-level place recognition in urban environment

The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightf...

Full description

Saved in:
Bibliographic Details
Main Authors: Minkyu Lee, Hyunil Yang, Dongsoo Han, Chansu Yu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 653
container_issue
container_start_page 648
container_title
container_volume
creator Minkyu Lee
Hyunil Yang
Dongsoo Han
Chansu Yu
description The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.
doi_str_mv 10.1109/PERCOMW.2010.5470515
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5470515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5470515</ieee_id><sourcerecordid>5470515</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183</originalsourceid><addsrcrecordid>eNo1j8tKAzEYhSMiqHWeQBd5gam5X5YyVCtWKlJwWdLkH4nMJEOmrfj2DljP5uN8iwMHoTtK5pQSe_-2eG_Wrx9zRiYjhSaSyjN0TQUTQimi9DmqrDb_XYpLVI3jF5ki5OTYFXppSv4OYz4UDwEXF2Lu3YDbXHDJua87OEKHh855wAV8_kxxH3PCMeFD2bmEIR1jyamHtL9BF63rRqhOnKHN42LTLOvV-um5eVjV0ZJ9bbWWzlArlNdGBKJJaBXhSjHeMgfGqmAIYZwrv9NBO-1ZK1wIVBkbNDV8hm7_ZiMAbIcSe1d-tqf7_BeIu08A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</creator><creatorcontrib>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</creatorcontrib><description>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</description><identifier>ISBN: 9781424466054</identifier><identifier>ISBN: 1424466059</identifier><identifier>EISBN: 1424466067</identifier><identifier>EISBN: 9781424466061</identifier><identifier>DOI: 10.1109/PERCOMW.2010.5470515</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; crowdsourcing ; Fingerprint recognition ; GSM ; Large-scale systems ; localization ; Nearest neighbor searches ; place recognition ; Radiofrequency identification ; Signal processing ; Wireless LAN ; WLAN fingerprint</subject><ispartof>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010, p.648-653</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5470515$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5470515$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minkyu Lee</creatorcontrib><creatorcontrib>Hyunil Yang</creatorcontrib><creatorcontrib>Dongsoo Han</creatorcontrib><creatorcontrib>Chansu Yu</creatorcontrib><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><title>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)</title><addtitle>PERCOMW</addtitle><description>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</description><subject>Computer science</subject><subject>crowdsourcing</subject><subject>Fingerprint recognition</subject><subject>GSM</subject><subject>Large-scale systems</subject><subject>localization</subject><subject>Nearest neighbor searches</subject><subject>place recognition</subject><subject>Radiofrequency identification</subject><subject>Signal processing</subject><subject>Wireless LAN</subject><subject>WLAN fingerprint</subject><isbn>9781424466054</isbn><isbn>1424466059</isbn><isbn>1424466067</isbn><isbn>9781424466061</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKAzEYhSMiqHWeQBd5gam5X5YyVCtWKlJwWdLkH4nMJEOmrfj2DljP5uN8iwMHoTtK5pQSe_-2eG_Wrx9zRiYjhSaSyjN0TQUTQimi9DmqrDb_XYpLVI3jF5ki5OTYFXppSv4OYz4UDwEXF2Lu3YDbXHDJua87OEKHh855wAV8_kxxH3PCMeFD2bmEIR1jyamHtL9BF63rRqhOnKHN42LTLOvV-um5eVjV0ZJ9bbWWzlArlNdGBKJJaBXhSjHeMgfGqmAIYZwrv9NBO-1ZK1wIVBkbNDV8hm7_ZiMAbIcSe1d-tqf7_BeIu08A</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Minkyu Lee</creator><creator>Hyunil Yang</creator><creator>Dongsoo Han</creator><creator>Chansu Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><author>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer science</topic><topic>crowdsourcing</topic><topic>Fingerprint recognition</topic><topic>GSM</topic><topic>Large-scale systems</topic><topic>localization</topic><topic>Nearest neighbor searches</topic><topic>place recognition</topic><topic>Radiofrequency identification</topic><topic>Signal processing</topic><topic>Wireless LAN</topic><topic>WLAN fingerprint</topic><toplevel>online_resources</toplevel><creatorcontrib>Minkyu Lee</creatorcontrib><creatorcontrib>Hyunil Yang</creatorcontrib><creatorcontrib>Dongsoo Han</creatorcontrib><creatorcontrib>Chansu Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minkyu Lee</au><au>Hyunil Yang</au><au>Dongsoo Han</au><au>Chansu Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Crowdsourced radiomap for room-level place recognition in urban environment</atitle><btitle>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)</btitle><stitle>PERCOMW</stitle><date>2010-03</date><risdate>2010</risdate><spage>648</spage><epage>653</epage><pages>648-653</pages><isbn>9781424466054</isbn><isbn>1424466059</isbn><eisbn>1424466067</eisbn><eisbn>9781424466061</eisbn><abstract>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</abstract><pub>IEEE</pub><doi>10.1109/PERCOMW.2010.5470515</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424466054
ispartof 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010, p.648-653
issn
language eng
recordid cdi_ieee_primary_5470515
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
crowdsourcing
Fingerprint recognition
GSM
Large-scale systems
localization
Nearest neighbor searches
place recognition
Radiofrequency identification
Signal processing
Wireless LAN
WLAN fingerprint
title Crowdsourced radiomap for room-level place recognition in urban environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Crowdsourced%20radiomap%20for%20room-level%20place%20recognition%20in%20urban%20environment&rft.btitle=2010%208th%20IEEE%20International%20Conference%20on%20Pervasive%20Computing%20and%20Communications%20Workshops%20(PERCOM%20Workshops)&rft.au=Minkyu%20Lee&rft.date=2010-03&rft.spage=648&rft.epage=653&rft.pages=648-653&rft.isbn=9781424466054&rft.isbn_list=1424466059&rft_id=info:doi/10.1109/PERCOMW.2010.5470515&rft.eisbn=1424466067&rft.eisbn_list=9781424466061&rft_dat=%3Cieee_6IE%3E5470515%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5470515&rfr_iscdi=true