Loading…
Crowdsourced radiomap for room-level place recognition in urban environment
The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightf...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 653 |
container_issue | |
container_start_page | 648 |
container_title | |
container_volume | |
creator | Minkyu Lee Hyunil Yang Dongsoo Han Chansu Yu |
description | The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity. |
doi_str_mv | 10.1109/PERCOMW.2010.5470515 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5470515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5470515</ieee_id><sourcerecordid>5470515</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183</originalsourceid><addsrcrecordid>eNo1j8tKAzEYhSMiqHWeQBd5gam5X5YyVCtWKlJwWdLkH4nMJEOmrfj2DljP5uN8iwMHoTtK5pQSe_-2eG_Wrx9zRiYjhSaSyjN0TQUTQimi9DmqrDb_XYpLVI3jF5ki5OTYFXppSv4OYz4UDwEXF2Lu3YDbXHDJua87OEKHh855wAV8_kxxH3PCMeFD2bmEIR1jyamHtL9BF63rRqhOnKHN42LTLOvV-um5eVjV0ZJ9bbWWzlArlNdGBKJJaBXhSjHeMgfGqmAIYZwrv9NBO-1ZK1wIVBkbNDV8hm7_ZiMAbIcSe1d-tqf7_BeIu08A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</creator><creatorcontrib>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</creatorcontrib><description>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</description><identifier>ISBN: 9781424466054</identifier><identifier>ISBN: 1424466059</identifier><identifier>EISBN: 1424466067</identifier><identifier>EISBN: 9781424466061</identifier><identifier>DOI: 10.1109/PERCOMW.2010.5470515</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; crowdsourcing ; Fingerprint recognition ; GSM ; Large-scale systems ; localization ; Nearest neighbor searches ; place recognition ; Radiofrequency identification ; Signal processing ; Wireless LAN ; WLAN fingerprint</subject><ispartof>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010, p.648-653</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5470515$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5470515$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minkyu Lee</creatorcontrib><creatorcontrib>Hyunil Yang</creatorcontrib><creatorcontrib>Dongsoo Han</creatorcontrib><creatorcontrib>Chansu Yu</creatorcontrib><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><title>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)</title><addtitle>PERCOMW</addtitle><description>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</description><subject>Computer science</subject><subject>crowdsourcing</subject><subject>Fingerprint recognition</subject><subject>GSM</subject><subject>Large-scale systems</subject><subject>localization</subject><subject>Nearest neighbor searches</subject><subject>place recognition</subject><subject>Radiofrequency identification</subject><subject>Signal processing</subject><subject>Wireless LAN</subject><subject>WLAN fingerprint</subject><isbn>9781424466054</isbn><isbn>1424466059</isbn><isbn>1424466067</isbn><isbn>9781424466061</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKAzEYhSMiqHWeQBd5gam5X5YyVCtWKlJwWdLkH4nMJEOmrfj2DljP5uN8iwMHoTtK5pQSe_-2eG_Wrx9zRiYjhSaSyjN0TQUTQimi9DmqrDb_XYpLVI3jF5ki5OTYFXppSv4OYz4UDwEXF2Lu3YDbXHDJua87OEKHh855wAV8_kxxH3PCMeFD2bmEIR1jyamHtL9BF63rRqhOnKHN42LTLOvV-um5eVjV0ZJ9bbWWzlArlNdGBKJJaBXhSjHeMgfGqmAIYZwrv9NBO-1ZK1wIVBkbNDV8hm7_ZiMAbIcSe1d-tqf7_BeIu08A</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Minkyu Lee</creator><creator>Hyunil Yang</creator><creator>Dongsoo Han</creator><creator>Chansu Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Crowdsourced radiomap for room-level place recognition in urban environment</title><author>Minkyu Lee ; Hyunil Yang ; Dongsoo Han ; Chansu Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer science</topic><topic>crowdsourcing</topic><topic>Fingerprint recognition</topic><topic>GSM</topic><topic>Large-scale systems</topic><topic>localization</topic><topic>Nearest neighbor searches</topic><topic>place recognition</topic><topic>Radiofrequency identification</topic><topic>Signal processing</topic><topic>Wireless LAN</topic><topic>WLAN fingerprint</topic><toplevel>online_resources</toplevel><creatorcontrib>Minkyu Lee</creatorcontrib><creatorcontrib>Hyunil Yang</creatorcontrib><creatorcontrib>Dongsoo Han</creatorcontrib><creatorcontrib>Chansu Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minkyu Lee</au><au>Hyunil Yang</au><au>Dongsoo Han</au><au>Chansu Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Crowdsourced radiomap for room-level place recognition in urban environment</atitle><btitle>2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)</btitle><stitle>PERCOMW</stitle><date>2010-03</date><risdate>2010</risdate><spage>648</spage><epage>653</epage><pages>648-653</pages><isbn>9781424466054</isbn><isbn>1424466059</isbn><eisbn>1424466067</eisbn><eisbn>9781424466061</eisbn><abstract>The proliferation of WLAN infrastructures has facilitated numerous indoor localization techniques using WLAN fingerprints. In particular, identifying a room or a place in urban environments could be usefully utilized in many application domains such as ubiquitous health. However, it is not straightforward how to bootstrap such a localization system because WLAN fingerprints of all places must be available in advance. In this paper, we propose a crowdsourcing approach for indoor place recognition. The key idea is to build an open participatory system through which users can contribute fingerprints. As the database size increases, it can provide place recognition service. We conducted an extensive experimental study at a university campus to demonstrate the performance of the proposed method in terms of recognition accuracy. We also studied key factors that could undermine the crowdsourcing approach such as fingerprint density, incorrect contribution, uneven contribution, and device heterogeneity.</abstract><pub>IEEE</pub><doi>10.1109/PERCOMW.2010.5470515</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424466054 |
ispartof | 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010, p.648-653 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5470515 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science crowdsourcing Fingerprint recognition GSM Large-scale systems localization Nearest neighbor searches place recognition Radiofrequency identification Signal processing Wireless LAN WLAN fingerprint |
title | Crowdsourced radiomap for room-level place recognition in urban environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Crowdsourced%20radiomap%20for%20room-level%20place%20recognition%20in%20urban%20environment&rft.btitle=2010%208th%20IEEE%20International%20Conference%20on%20Pervasive%20Computing%20and%20Communications%20Workshops%20(PERCOM%20Workshops)&rft.au=Minkyu%20Lee&rft.date=2010-03&rft.spage=648&rft.epage=653&rft.pages=648-653&rft.isbn=9781424466054&rft.isbn_list=1424466059&rft_id=info:doi/10.1109/PERCOMW.2010.5470515&rft.eisbn=1424466067&rft.eisbn_list=9781424466061&rft_dat=%3Cieee_6IE%3E5470515%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9775a81946c784d070df6036623f2ae896d8002336cb7d7a7c2f4add1689d7183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5470515&rfr_iscdi=true |