Loading…

Digital hardware implementation of Self-Organising Maps

In this paper a digital hardware implementation of the Self-Organising Maps (SOMs) for the application of handwritten digit recognition is presented. Two methods were implemented: Euclidean and Manhattan method. The highest recognition rate for both methods was calculated through three testing techn...

Full description

Saved in:
Bibliographic Details
Main Authors: Cutajar, M, Gatt, E, Micallef, J, Grech, I, Casha, O
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1128
container_issue
container_start_page 1123
container_title
container_volume
creator Cutajar, M
Gatt, E
Micallef, J
Grech, I
Casha, O
description In this paper a digital hardware implementation of the Self-Organising Maps (SOMs) for the application of handwritten digit recognition is presented. Two methods were implemented: Euclidean and Manhattan method. The highest recognition rate for both methods was calculated through three testing techniques. The highest recognition rates obtained are 71.267% and 63.667% for the Euclidean and the Manhattan methods respectively. Both methods were implemented on the Xilinx Spartan-3 200K gates (XC3S200) to compare their speed performance and area consumed.
doi_str_mv 10.1109/MELCON.2010.5476361
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5476361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5476361</ieee_id><sourcerecordid>5476361</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1b1fee6502a2b3d277ca815c67953b944faa7303ec9bbf210d64222d3abb47b13</originalsourceid><addsrcrecordid>eNpVkMtKw0AYhccbWGqeoJu8QOr8c80sJdYqpGahrss_yUwcSdIwCYhvb8UiuDpwPvg4HEJWQNcA1NzuNmVRPa8ZPRZSaMUVnJHE6BwEE0JqI_k5WTCQeZaLHC7-MW4u_5jm1ySZpg9KjyqjDJcLou9DG2bs0neMzSdGl4Z-7FzvhhnncBjSg09fXOezKrY4hCkMbbrDcbohVx67ySWnXJK3h81r8ZiV1fapuCuzAFrOGVjwzilJGTLLG6Z1jTnIWv2stkYIj6g55a421noGtFGCMdZwtFZoC3xJVr_e4JzbjzH0GL_2pxv4N1lBTB8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Digital hardware implementation of Self-Organising Maps</title><source>IEEE Xplore All Conference Series</source><creator>Cutajar, M ; Gatt, E ; Micallef, J ; Grech, I ; Casha, O</creator><creatorcontrib>Cutajar, M ; Gatt, E ; Micallef, J ; Grech, I ; Casha, O</creatorcontrib><description>In this paper a digital hardware implementation of the Self-Organising Maps (SOMs) for the application of handwritten digit recognition is presented. Two methods were implemented: Euclidean and Manhattan method. The highest recognition rate for both methods was calculated through three testing techniques. The highest recognition rates obtained are 71.267% and 63.667% for the Euclidean and the Manhattan methods respectively. Both methods were implemented on the Xilinx Spartan-3 200K gates (XC3S200) to compare their speed performance and area consumed.</description><identifier>ISSN: 2158-8473</identifier><identifier>ISBN: 9781424457939</identifier><identifier>ISBN: 1424457939</identifier><identifier>EISSN: 2158-8481</identifier><identifier>EISBN: 9781424457953</identifier><identifier>EISBN: 1424457955</identifier><identifier>EISBN: 9781424457946</identifier><identifier>EISBN: 1424457947</identifier><identifier>DOI: 10.1109/MELCON.2010.5476361</identifier><language>eng</language><publisher>IEEE</publisher><subject>Handwriting recognition ; Hardware ; Microelectronics ; Neural networks ; Neurofeedback ; Neurons ; Pattern recognition ; Testing ; Trade agreements ; Writing</subject><ispartof>Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, p.1123-1128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5476361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5476361$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cutajar, M</creatorcontrib><creatorcontrib>Gatt, E</creatorcontrib><creatorcontrib>Micallef, J</creatorcontrib><creatorcontrib>Grech, I</creatorcontrib><creatorcontrib>Casha, O</creatorcontrib><title>Digital hardware implementation of Self-Organising Maps</title><title>Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference</title><addtitle>MELCON</addtitle><description>In this paper a digital hardware implementation of the Self-Organising Maps (SOMs) for the application of handwritten digit recognition is presented. Two methods were implemented: Euclidean and Manhattan method. The highest recognition rate for both methods was calculated through three testing techniques. The highest recognition rates obtained are 71.267% and 63.667% for the Euclidean and the Manhattan methods respectively. Both methods were implemented on the Xilinx Spartan-3 200K gates (XC3S200) to compare their speed performance and area consumed.</description><subject>Handwriting recognition</subject><subject>Hardware</subject><subject>Microelectronics</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Testing</subject><subject>Trade agreements</subject><subject>Writing</subject><issn>2158-8473</issn><issn>2158-8481</issn><isbn>9781424457939</isbn><isbn>1424457939</isbn><isbn>9781424457953</isbn><isbn>1424457955</isbn><isbn>9781424457946</isbn><isbn>1424457947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKw0AYhccbWGqeoJu8QOr8c80sJdYqpGahrss_yUwcSdIwCYhvb8UiuDpwPvg4HEJWQNcA1NzuNmVRPa8ZPRZSaMUVnJHE6BwEE0JqI_k5WTCQeZaLHC7-MW4u_5jm1ySZpg9KjyqjDJcLou9DG2bs0neMzSdGl4Z-7FzvhhnncBjSg09fXOezKrY4hCkMbbrDcbohVx67ySWnXJK3h81r8ZiV1fapuCuzAFrOGVjwzilJGTLLG6Z1jTnIWv2stkYIj6g55a421noGtFGCMdZwtFZoC3xJVr_e4JzbjzH0GL_2pxv4N1lBTB8</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Cutajar, M</creator><creator>Gatt, E</creator><creator>Micallef, J</creator><creator>Grech, I</creator><creator>Casha, O</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201004</creationdate><title>Digital hardware implementation of Self-Organising Maps</title><author>Cutajar, M ; Gatt, E ; Micallef, J ; Grech, I ; Casha, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1b1fee6502a2b3d277ca815c67953b944faa7303ec9bbf210d64222d3abb47b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Handwriting recognition</topic><topic>Hardware</topic><topic>Microelectronics</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Testing</topic><topic>Trade agreements</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cutajar, M</creatorcontrib><creatorcontrib>Gatt, E</creatorcontrib><creatorcontrib>Micallef, J</creatorcontrib><creatorcontrib>Grech, I</creatorcontrib><creatorcontrib>Casha, O</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cutajar, M</au><au>Gatt, E</au><au>Micallef, J</au><au>Grech, I</au><au>Casha, O</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Digital hardware implementation of Self-Organising Maps</atitle><btitle>Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference</btitle><stitle>MELCON</stitle><date>2010-04</date><risdate>2010</risdate><spage>1123</spage><epage>1128</epage><pages>1123-1128</pages><issn>2158-8473</issn><eissn>2158-8481</eissn><isbn>9781424457939</isbn><isbn>1424457939</isbn><eisbn>9781424457953</eisbn><eisbn>1424457955</eisbn><eisbn>9781424457946</eisbn><eisbn>1424457947</eisbn><abstract>In this paper a digital hardware implementation of the Self-Organising Maps (SOMs) for the application of handwritten digit recognition is presented. Two methods were implemented: Euclidean and Manhattan method. The highest recognition rate for both methods was calculated through three testing techniques. The highest recognition rates obtained are 71.267% and 63.667% for the Euclidean and the Manhattan methods respectively. Both methods were implemented on the Xilinx Spartan-3 200K gates (XC3S200) to compare their speed performance and area consumed.</abstract><pub>IEEE</pub><doi>10.1109/MELCON.2010.5476361</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-8473
ispartof Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, p.1123-1128
issn 2158-8473
2158-8481
language eng
recordid cdi_ieee_primary_5476361
source IEEE Xplore All Conference Series
subjects Handwriting recognition
Hardware
Microelectronics
Neural networks
Neurofeedback
Neurons
Pattern recognition
Testing
Trade agreements
Writing
title Digital hardware implementation of Self-Organising Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Digital%20hardware%20implementation%20of%20Self-Organising%20Maps&rft.btitle=Melecon%202010%20-%202010%2015th%20IEEE%20Mediterranean%20Electrotechnical%20Conference&rft.au=Cutajar,%20M&rft.date=2010-04&rft.spage=1123&rft.epage=1128&rft.pages=1123-1128&rft.issn=2158-8473&rft.eissn=2158-8481&rft.isbn=9781424457939&rft.isbn_list=1424457939&rft_id=info:doi/10.1109/MELCON.2010.5476361&rft.eisbn=9781424457953&rft.eisbn_list=1424457955&rft.eisbn_list=9781424457946&rft.eisbn_list=1424457947&rft_dat=%3Cieee_CHZPO%3E5476361%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1b1fee6502a2b3d277ca815c67953b944faa7303ec9bbf210d64222d3abb47b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5476361&rfr_iscdi=true