Loading…

Input Values Function for Improving Generalization Capability of BP Neural Network

As is known to all, Back propagation (BP) neural network has two important advantage and disadvantage: learning speed and generalization capability (GC). In this paper, we propose a new method by adding input values function (IVF) to improve the generalization of BP neural network. The result shows:...

Full description

Saved in:
Bibliographic Details
Main Authors: Tongzhi He, Shijue Zheng, Ping Zhang, Ming Zou
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 231
container_issue
container_start_page 228
container_title
container_volume
creator Tongzhi He
Shijue Zheng
Ping Zhang
Ming Zou
description As is known to all, Back propagation (BP) neural network has two important advantage and disadvantage: learning speed and generalization capability (GC). In this paper, we propose a new method by adding input values function (IVF) to improve the generalization of BP neural network. The result shows: GC in a certain extent has been improved throught this method. But if we want to do much more promoting in various fields, there are still a lot of things that we must to be studied.
doi_str_mv 10.1109/APWCS.2010.64
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5480505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5480505</ieee_id><sourcerecordid>5480505</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1c2cc37e0fd9dbcdfdbae5e55c699b0040f56c51f543bdfb92ae137737a49cee3</originalsourceid><addsrcrecordid>eNpFjl1LwzAYhSMy0M1deuVN_sBmPt6ky-UsbhaGDh16OdL0jUS7tqStMn-9RQXPzcPhgcMh5JKzOefMXC-3L-nTXLChazghYw4CQINewOl_SfSIjAVjxgBwqc_ItG3f2BBQArg4J49Z1fQdfbZljy1d9ZXrQl1RX0eaHZpYf4Tqla6xwmjL8GV_ZGobm4cydEdae3qzpffYD3pA91nH9wsy8rZscfrHCdmtbnfp3WzzsM7S5WYWDOtm3AnnZILMF6bIXeGL3KJCpZw2Jh8OMq-0U9wrkHnhcyMscpkkMrFgHKKckKvf2YCI-yaGg43HvYIFU0zJbwUDUqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Input Values Function for Improving Generalization Capability of BP Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tongzhi He ; Shijue Zheng ; Ping Zhang ; Ming Zou</creator><creatorcontrib>Tongzhi He ; Shijue Zheng ; Ping Zhang ; Ming Zou</creatorcontrib><description>As is known to all, Back propagation (BP) neural network has two important advantage and disadvantage: learning speed and generalization capability (GC). In this paper, we propose a new method by adding input values function (IVF) to improve the generalization of BP neural network. The result shows: GC in a certain extent has been improved throught this method. But if we want to do much more promoting in various fields, there are still a lot of things that we must to be studied.</description><identifier>ISBN: 1424464676</identifier><identifier>ISBN: 9781424464678</identifier><identifier>EISBN: 1424464684</identifier><identifier>EISBN: 9781424464685</identifier><identifier>DOI: 10.1109/APWCS.2010.64</identifier><identifier>LCCN: 2009944136</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; BP neural network ; Computer science ; Education ; Feedforward systems ; Generalization Capability ; Helium ; Input Values Function ; Multi-layer neural network ; Neural networks ; Neurons ; System testing ; Wearable computers</subject><ispartof>2010 Asia-Pacific Conference on Wearable Computing Systems, 2010, p.228-231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5480505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5480505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tongzhi He</creatorcontrib><creatorcontrib>Shijue Zheng</creatorcontrib><creatorcontrib>Ping Zhang</creatorcontrib><creatorcontrib>Ming Zou</creatorcontrib><title>Input Values Function for Improving Generalization Capability of BP Neural Network</title><title>2010 Asia-Pacific Conference on Wearable Computing Systems</title><addtitle>APWCS</addtitle><description>As is known to all, Back propagation (BP) neural network has two important advantage and disadvantage: learning speed and generalization capability (GC). In this paper, we propose a new method by adding input values function (IVF) to improve the generalization of BP neural network. The result shows: GC in a certain extent has been improved throught this method. But if we want to do much more promoting in various fields, there are still a lot of things that we must to be studied.</description><subject>Algorithm design and analysis</subject><subject>BP neural network</subject><subject>Computer science</subject><subject>Education</subject><subject>Feedforward systems</subject><subject>Generalization Capability</subject><subject>Helium</subject><subject>Input Values Function</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>System testing</subject><subject>Wearable computers</subject><isbn>1424464676</isbn><isbn>9781424464678</isbn><isbn>1424464684</isbn><isbn>9781424464685</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFjl1LwzAYhSMy0M1deuVN_sBmPt6ky-UsbhaGDh16OdL0jUS7tqStMn-9RQXPzcPhgcMh5JKzOefMXC-3L-nTXLChazghYw4CQINewOl_SfSIjAVjxgBwqc_ItG3f2BBQArg4J49Z1fQdfbZljy1d9ZXrQl1RX0eaHZpYf4Tqla6xwmjL8GV_ZGobm4cydEdae3qzpffYD3pA91nH9wsy8rZscfrHCdmtbnfp3WzzsM7S5WYWDOtm3AnnZILMF6bIXeGL3KJCpZw2Jh8OMq-0U9wrkHnhcyMscpkkMrFgHKKckKvf2YCI-yaGg43HvYIFU0zJbwUDUqA</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Tongzhi He</creator><creator>Shijue Zheng</creator><creator>Ping Zhang</creator><creator>Ming Zou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Input Values Function for Improving Generalization Capability of BP Neural Network</title><author>Tongzhi He ; Shijue Zheng ; Ping Zhang ; Ming Zou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1c2cc37e0fd9dbcdfdbae5e55c699b0040f56c51f543bdfb92ae137737a49cee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>BP neural network</topic><topic>Computer science</topic><topic>Education</topic><topic>Feedforward systems</topic><topic>Generalization Capability</topic><topic>Helium</topic><topic>Input Values Function</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>System testing</topic><topic>Wearable computers</topic><toplevel>online_resources</toplevel><creatorcontrib>Tongzhi He</creatorcontrib><creatorcontrib>Shijue Zheng</creatorcontrib><creatorcontrib>Ping Zhang</creatorcontrib><creatorcontrib>Ming Zou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tongzhi He</au><au>Shijue Zheng</au><au>Ping Zhang</au><au>Ming Zou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Input Values Function for Improving Generalization Capability of BP Neural Network</atitle><btitle>2010 Asia-Pacific Conference on Wearable Computing Systems</btitle><stitle>APWCS</stitle><date>2010-04</date><risdate>2010</risdate><spage>228</spage><epage>231</epage><pages>228-231</pages><isbn>1424464676</isbn><isbn>9781424464678</isbn><eisbn>1424464684</eisbn><eisbn>9781424464685</eisbn><abstract>As is known to all, Back propagation (BP) neural network has two important advantage and disadvantage: learning speed and generalization capability (GC). In this paper, we propose a new method by adding input values function (IVF) to improve the generalization of BP neural network. The result shows: GC in a certain extent has been improved throught this method. But if we want to do much more promoting in various fields, there are still a lot of things that we must to be studied.</abstract><pub>IEEE</pub><doi>10.1109/APWCS.2010.64</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424464676
ispartof 2010 Asia-Pacific Conference on Wearable Computing Systems, 2010, p.228-231
issn
language eng
recordid cdi_ieee_primary_5480505
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
BP neural network
Computer science
Education
Feedforward systems
Generalization Capability
Helium
Input Values Function
Multi-layer neural network
Neural networks
Neurons
System testing
Wearable computers
title Input Values Function for Improving Generalization Capability of BP Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Input%20Values%20Function%20for%20Improving%20Generalization%20Capability%20of%20BP%20Neural%20Network&rft.btitle=2010%20Asia-Pacific%20Conference%20on%20Wearable%20Computing%20Systems&rft.au=Tongzhi%20He&rft.date=2010-04&rft.spage=228&rft.epage=231&rft.pages=228-231&rft.isbn=1424464676&rft.isbn_list=9781424464678&rft_id=info:doi/10.1109/APWCS.2010.64&rft.eisbn=1424464684&rft.eisbn_list=9781424464685&rft_dat=%3Cieee_6IE%3E5480505%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1c2cc37e0fd9dbcdfdbae5e55c699b0040f56c51f543bdfb92ae137737a49cee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5480505&rfr_iscdi=true