Loading…

Prediction of electricity consumption based on genetic algorithm - RBF neural network

In order to avoid the economic loss due to too much or too little of electricity consumption, electricity consumption needs to be predicted. In order to solve the drawbacks of BP neural network, genetic algorithm and RBF neural network (GA-RBFNN) is presented to forecast electricity consumption in t...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeng Qing-wei, Xu Zhi-Hai, Wu Jian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 342
container_issue
container_start_page 339
container_title
container_volume 5
creator Zeng Qing-wei
Xu Zhi-Hai
Wu Jian
description In order to avoid the economic loss due to too much or too little of electricity consumption, electricity consumption needs to be predicted. In order to solve the drawbacks of BP neural network, genetic algorithm and RBF neural network (GA-RBFNN) is presented to forecast electricity consumption in the study, and genetic algorithm is introduced and tried in optimizing the parameters of RBF neural network. The electricity consumption data and relevant features data of a certain province from September to December in 2007 are used as the experimental data. The experiment results indicate that GA-RBFNN is very suitable for electricity consumption prediction by relevant features data.
doi_str_mv 10.1109/ICACC.2010.5487062
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5487062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5487062</ieee_id><sourcerecordid>5487062</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c2b8be53424fb0c05410baeaba08664dc2737ae877004db87e01cc0453d961f3</originalsourceid><addsrcrecordid>eNo1kN1KAzEUhCMiqHVfQG_yAluTbP72UherQsFS7HVJsmdrdH9KkiJ9e4PWczNnGBg-BqFbSuaUkvr-tXlomjkj2QuuFZHsDBW10pQzzoXmWp6j638jxCUqYvwk-bhgUtMrtFkFaL1Lfhrx1GHowaXgnU9H7KYxHob9b2RNhBbnZwcjJO-w6XdT8OljwCVePy7wCIdg-izpewpfN-iiM32E4qQztFk8vTcv5fLtOSMvS0-VSCV3zGoLosqAnSWOCE6JNWCsIVpK3jqmKmVAK5WJW6sVEOpchq_aWtKumqG7v14PANt98IMJx-1pieoHj-hSMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Prediction of electricity consumption based on genetic algorithm - RBF neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zeng Qing-wei ; Xu Zhi-Hai ; Wu Jian</creator><creatorcontrib>Zeng Qing-wei ; Xu Zhi-Hai ; Wu Jian</creatorcontrib><description>In order to avoid the economic loss due to too much or too little of electricity consumption, electricity consumption needs to be predicted. In order to solve the drawbacks of BP neural network, genetic algorithm and RBF neural network (GA-RBFNN) is presented to forecast electricity consumption in the study, and genetic algorithm is introduced and tried in optimizing the parameters of RBF neural network. The electricity consumption data and relevant features data of a certain province from September to December in 2007 are used as the experimental data. The experiment results indicate that GA-RBFNN is very suitable for electricity consumption prediction by relevant features data.</description><identifier>ISBN: 1424458455</identifier><identifier>ISBN: 9781424458455</identifier><identifier>EISBN: 9781424458486</identifier><identifier>EISBN: 1424458471</identifier><identifier>EISBN: 9781424458479</identifier><identifier>EISBN: 142445848X</identifier><identifier>DOI: 10.1109/ICACC.2010.5487062</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Economic forecasting ; electricity consumption ; Electronic mail ; Energy consumption ; Feedforward neural networks ; genetic algorithm ; Genetic algorithms ; Neural networks ; prediction ; Predictive models ; RBF neural network ; Temperature ; Weather forecasting</subject><ispartof>2010 2nd International Conference on Advanced Computer Control, 2010, Vol.5, p.339-342</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5487062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5487062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng Qing-wei</creatorcontrib><creatorcontrib>Xu Zhi-Hai</creatorcontrib><creatorcontrib>Wu Jian</creatorcontrib><title>Prediction of electricity consumption based on genetic algorithm - RBF neural network</title><title>2010 2nd International Conference on Advanced Computer Control</title><addtitle>ICACC</addtitle><description>In order to avoid the economic loss due to too much or too little of electricity consumption, electricity consumption needs to be predicted. In order to solve the drawbacks of BP neural network, genetic algorithm and RBF neural network (GA-RBFNN) is presented to forecast electricity consumption in the study, and genetic algorithm is introduced and tried in optimizing the parameters of RBF neural network. The electricity consumption data and relevant features data of a certain province from September to December in 2007 are used as the experimental data. The experiment results indicate that GA-RBFNN is very suitable for electricity consumption prediction by relevant features data.</description><subject>Biological cells</subject><subject>Economic forecasting</subject><subject>electricity consumption</subject><subject>Electronic mail</subject><subject>Energy consumption</subject><subject>Feedforward neural networks</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>prediction</subject><subject>Predictive models</subject><subject>RBF neural network</subject><subject>Temperature</subject><subject>Weather forecasting</subject><isbn>1424458455</isbn><isbn>9781424458455</isbn><isbn>9781424458486</isbn><isbn>1424458471</isbn><isbn>9781424458479</isbn><isbn>142445848X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KAzEUhCMiqHVfQG_yAluTbP72UherQsFS7HVJsmdrdH9KkiJ9e4PWczNnGBg-BqFbSuaUkvr-tXlomjkj2QuuFZHsDBW10pQzzoXmWp6j638jxCUqYvwk-bhgUtMrtFkFaL1Lfhrx1GHowaXgnU9H7KYxHob9b2RNhBbnZwcjJO-w6XdT8OljwCVePy7wCIdg-izpewpfN-iiM32E4qQztFk8vTcv5fLtOSMvS0-VSCV3zGoLosqAnSWOCE6JNWCsIVpK3jqmKmVAK5WJW6sVEOpchq_aWtKumqG7v14PANt98IMJx-1pieoHj-hSMA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Zeng Qing-wei</creator><creator>Xu Zhi-Hai</creator><creator>Wu Jian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Prediction of electricity consumption based on genetic algorithm - RBF neural network</title><author>Zeng Qing-wei ; Xu Zhi-Hai ; Wu Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c2b8be53424fb0c05410baeaba08664dc2737ae877004db87e01cc0453d961f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological cells</topic><topic>Economic forecasting</topic><topic>electricity consumption</topic><topic>Electronic mail</topic><topic>Energy consumption</topic><topic>Feedforward neural networks</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>prediction</topic><topic>Predictive models</topic><topic>RBF neural network</topic><topic>Temperature</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng Qing-wei</creatorcontrib><creatorcontrib>Xu Zhi-Hai</creatorcontrib><creatorcontrib>Wu Jian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng Qing-wei</au><au>Xu Zhi-Hai</au><au>Wu Jian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of electricity consumption based on genetic algorithm - RBF neural network</atitle><btitle>2010 2nd International Conference on Advanced Computer Control</btitle><stitle>ICACC</stitle><date>2010-03</date><risdate>2010</risdate><volume>5</volume><spage>339</spage><epage>342</epage><pages>339-342</pages><isbn>1424458455</isbn><isbn>9781424458455</isbn><eisbn>9781424458486</eisbn><eisbn>1424458471</eisbn><eisbn>9781424458479</eisbn><eisbn>142445848X</eisbn><abstract>In order to avoid the economic loss due to too much or too little of electricity consumption, electricity consumption needs to be predicted. In order to solve the drawbacks of BP neural network, genetic algorithm and RBF neural network (GA-RBFNN) is presented to forecast electricity consumption in the study, and genetic algorithm is introduced and tried in optimizing the parameters of RBF neural network. The electricity consumption data and relevant features data of a certain province from September to December in 2007 are used as the experimental data. The experiment results indicate that GA-RBFNN is very suitable for electricity consumption prediction by relevant features data.</abstract><pub>IEEE</pub><doi>10.1109/ICACC.2010.5487062</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424458455
ispartof 2010 2nd International Conference on Advanced Computer Control, 2010, Vol.5, p.339-342
issn
language eng
recordid cdi_ieee_primary_5487062
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Economic forecasting
electricity consumption
Electronic mail
Energy consumption
Feedforward neural networks
genetic algorithm
Genetic algorithms
Neural networks
prediction
Predictive models
RBF neural network
Temperature
Weather forecasting
title Prediction of electricity consumption based on genetic algorithm - RBF neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20electricity%20consumption%20based%20on%20genetic%20algorithm%20-%20RBF%20neural%20network&rft.btitle=2010%202nd%20International%20Conference%20on%20Advanced%20Computer%20Control&rft.au=Zeng%20Qing-wei&rft.date=2010-03&rft.volume=5&rft.spage=339&rft.epage=342&rft.pages=339-342&rft.isbn=1424458455&rft.isbn_list=9781424458455&rft_id=info:doi/10.1109/ICACC.2010.5487062&rft.eisbn=9781424458486&rft.eisbn_list=1424458471&rft.eisbn_list=9781424458479&rft.eisbn_list=142445848X&rft_dat=%3Cieee_6IE%3E5487062%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4c2b8be53424fb0c05410baeaba08664dc2737ae877004db87e01cc0453d961f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5487062&rfr_iscdi=true