Loading…

Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow

Dielectric Barrier Discharge (DBD) is a discharge phenomenon where a high voltage is applied on at least two electrodes separated by an insulating dielectric material. Dielectric Barrier Discharge plasma actuator has been studied widely in this last decade but mostly the study is focusing on experim...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmadi, Azizi, Labadin, Jane, Piau, Phang, Rigit, Andrew R H
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 423
container_issue
container_start_page 420
container_title
container_volume
creator Ahmadi, Azizi
Labadin, Jane
Piau, Phang
Rigit, Andrew R H
description Dielectric Barrier Discharge (DBD) is a discharge phenomenon where a high voltage is applied on at least two electrodes separated by an insulating dielectric material. Dielectric Barrier Discharge plasma actuator has been studied widely in this last decade but mostly the study is focusing on experimental research rather than mathematical modeling. The limitation with studying DBD plasma actuator experimentally is that it does not obtain direct information on the physics of the plasma flow, which is important in determining its efficiency. In this paper, we model the steady fluid model DBD plasma actuator mathematically. The preliminary result of the model are presented and discussed. To initiate the modeling process, the stream-function and vorticity are defined so that the Navier-Stokes momentum equation could be transformed into vorticity equation. The resulting two governing equations, which are vorticity and stream-function equations are solved numerically to obtain the vorticity of the flow in x and y directions. Finite difference method was adopted to discretize both equations and the system of equations is solved by the Gauss-Seidel method. Our numerical solutions show that the applied voltage plays an important role in the model. We found that as the applied voltage increases, the vorticity of the plasma flow also increases.
doi_str_mv 10.1109/AMS.2010.88
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5489149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5489149</ieee_id><sourcerecordid>5489149</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1278-79efbad844992e9a32e2b44a380023e8e1355b6f578457cc00b0ccced7bd69863</originalsourceid><addsrcrecordid>eNotjM1KAzEYRSMqWOqsXLrJC0zNz5e_Za1WhVYFdV0ymW_aSMaRpCJ9ewf1bi7nXLiEXHA245y5q_n6ZSbYSNYekcoZy4x2CpgW5viXOQgAw53WJ2QipNE15xrOSFXKOxsDSnDGJ2Tx-NVjjsEnuh5aTPFjS4eO7ndIbyImDPtxpNc-54h5VCXsfN5ioc_Jl97TZRq-z8lp51PB6r-n5G15-7q4r1dPdw-L-aqOXBhbG4dd41sL4JxA56VA0QB4aRkTEi1yqVSjO2UsKBMCYw0LIWBrmlY7q-WUXP79RkTcfObY-3zYKLCOg5M_r8lL6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow</title><source>IEEE Xplore All Conference Series</source><creator>Ahmadi, Azizi ; Labadin, Jane ; Piau, Phang ; Rigit, Andrew R H</creator><creatorcontrib>Ahmadi, Azizi ; Labadin, Jane ; Piau, Phang ; Rigit, Andrew R H</creatorcontrib><description>Dielectric Barrier Discharge (DBD) is a discharge phenomenon where a high voltage is applied on at least two electrodes separated by an insulating dielectric material. Dielectric Barrier Discharge plasma actuator has been studied widely in this last decade but mostly the study is focusing on experimental research rather than mathematical modeling. The limitation with studying DBD plasma actuator experimentally is that it does not obtain direct information on the physics of the plasma flow, which is important in determining its efficiency. In this paper, we model the steady fluid model DBD plasma actuator mathematically. The preliminary result of the model are presented and discussed. To initiate the modeling process, the stream-function and vorticity are defined so that the Navier-Stokes momentum equation could be transformed into vorticity equation. The resulting two governing equations, which are vorticity and stream-function equations are solved numerically to obtain the vorticity of the flow in x and y directions. Finite difference method was adopted to discretize both equations and the system of equations is solved by the Gauss-Seidel method. Our numerical solutions show that the applied voltage plays an important role in the model. We found that as the applied voltage increases, the vorticity of the plasma flow also increases.</description><identifier>ISSN: 2376-1164</identifier><identifier>ISBN: 9781424471966</identifier><identifier>ISBN: 1424471966</identifier><identifier>EISBN: 9780769540627</identifier><identifier>EISBN: 9781424471973</identifier><identifier>EISBN: 1424471974</identifier><identifier>EISBN: 0769540627</identifier><identifier>DOI: 10.1109/AMS.2010.88</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Dielectric materials ; Dielectrics and electrical insulation ; Dieletric Barrier Discharges ; Difference equations ; Electrodes ; Mathematical model ; Mathematical Modeling ; Navier-Stokes equations ; Numerical models ; Plasma Actuator ; Plasma materials processing ; Voltage</subject><ispartof>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.420-423</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5489149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5489149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmadi, Azizi</creatorcontrib><creatorcontrib>Labadin, Jane</creatorcontrib><creatorcontrib>Piau, Phang</creatorcontrib><creatorcontrib>Rigit, Andrew R H</creatorcontrib><title>Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow</title><title>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</title><addtitle>AMS</addtitle><description>Dielectric Barrier Discharge (DBD) is a discharge phenomenon where a high voltage is applied on at least two electrodes separated by an insulating dielectric material. Dielectric Barrier Discharge plasma actuator has been studied widely in this last decade but mostly the study is focusing on experimental research rather than mathematical modeling. The limitation with studying DBD plasma actuator experimentally is that it does not obtain direct information on the physics of the plasma flow, which is important in determining its efficiency. In this paper, we model the steady fluid model DBD plasma actuator mathematically. The preliminary result of the model are presented and discussed. To initiate the modeling process, the stream-function and vorticity are defined so that the Navier-Stokes momentum equation could be transformed into vorticity equation. The resulting two governing equations, which are vorticity and stream-function equations are solved numerically to obtain the vorticity of the flow in x and y directions. Finite difference method was adopted to discretize both equations and the system of equations is solved by the Gauss-Seidel method. Our numerical solutions show that the applied voltage plays an important role in the model. We found that as the applied voltage increases, the vorticity of the plasma flow also increases.</description><subject>Actuators</subject><subject>Dielectric materials</subject><subject>Dielectrics and electrical insulation</subject><subject>Dieletric Barrier Discharges</subject><subject>Difference equations</subject><subject>Electrodes</subject><subject>Mathematical model</subject><subject>Mathematical Modeling</subject><subject>Navier-Stokes equations</subject><subject>Numerical models</subject><subject>Plasma Actuator</subject><subject>Plasma materials processing</subject><subject>Voltage</subject><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><isbn>9780769540627</isbn><isbn>9781424471973</isbn><isbn>1424471974</isbn><isbn>0769540627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KAzEYRSMqWOqsXLrJC0zNz5e_Za1WhVYFdV0ymW_aSMaRpCJ9ewf1bi7nXLiEXHA245y5q_n6ZSbYSNYekcoZy4x2CpgW5viXOQgAw53WJ2QipNE15xrOSFXKOxsDSnDGJ2Tx-NVjjsEnuh5aTPFjS4eO7ndIbyImDPtxpNc-54h5VCXsfN5ioc_Jl97TZRq-z8lp51PB6r-n5G15-7q4r1dPdw-L-aqOXBhbG4dd41sL4JxA56VA0QB4aRkTEi1yqVSjO2UsKBMCYw0LIWBrmlY7q-WUXP79RkTcfObY-3zYKLCOg5M_r8lL6Q</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ahmadi, Azizi</creator><creator>Labadin, Jane</creator><creator>Piau, Phang</creator><creator>Rigit, Andrew R H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow</title><author>Ahmadi, Azizi ; Labadin, Jane ; Piau, Phang ; Rigit, Andrew R H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1278-79efbad844992e9a32e2b44a380023e8e1355b6f578457cc00b0ccced7bd69863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuators</topic><topic>Dielectric materials</topic><topic>Dielectrics and electrical insulation</topic><topic>Dieletric Barrier Discharges</topic><topic>Difference equations</topic><topic>Electrodes</topic><topic>Mathematical model</topic><topic>Mathematical Modeling</topic><topic>Navier-Stokes equations</topic><topic>Numerical models</topic><topic>Plasma Actuator</topic><topic>Plasma materials processing</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Azizi</creatorcontrib><creatorcontrib>Labadin, Jane</creatorcontrib><creatorcontrib>Piau, Phang</creatorcontrib><creatorcontrib>Rigit, Andrew R H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmadi, Azizi</au><au>Labadin, Jane</au><au>Piau, Phang</au><au>Rigit, Andrew R H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow</atitle><btitle>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</btitle><stitle>AMS</stitle><date>2010-05</date><risdate>2010</risdate><spage>420</spage><epage>423</epage><pages>420-423</pages><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><eisbn>9780769540627</eisbn><eisbn>9781424471973</eisbn><eisbn>1424471974</eisbn><eisbn>0769540627</eisbn><abstract>Dielectric Barrier Discharge (DBD) is a discharge phenomenon where a high voltage is applied on at least two electrodes separated by an insulating dielectric material. Dielectric Barrier Discharge plasma actuator has been studied widely in this last decade but mostly the study is focusing on experimental research rather than mathematical modeling. The limitation with studying DBD plasma actuator experimentally is that it does not obtain direct information on the physics of the plasma flow, which is important in determining its efficiency. In this paper, we model the steady fluid model DBD plasma actuator mathematically. The preliminary result of the model are presented and discussed. To initiate the modeling process, the stream-function and vorticity are defined so that the Navier-Stokes momentum equation could be transformed into vorticity equation. The resulting two governing equations, which are vorticity and stream-function equations are solved numerically to obtain the vorticity of the flow in x and y directions. Finite difference method was adopted to discretize both equations and the system of equations is solved by the Gauss-Seidel method. Our numerical solutions show that the applied voltage plays an important role in the model. We found that as the applied voltage increases, the vorticity of the plasma flow also increases.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2010.88</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-1164
ispartof 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.420-423
issn 2376-1164
language eng
recordid cdi_ieee_primary_5489149
source IEEE Xplore All Conference Series
subjects Actuators
Dielectric materials
Dielectrics and electrical insulation
Dieletric Barrier Discharges
Difference equations
Electrodes
Mathematical model
Mathematical Modeling
Navier-Stokes equations
Numerical models
Plasma Actuator
Plasma materials processing
Voltage
title Numerical Modeling of the Dielectric Barrier Discharges Plasma Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20Modeling%20of%20the%20Dielectric%20Barrier%20Discharges%20Plasma%20Flow&rft.btitle=2010%20Fourth%20Asia%20International%20Conference%20on%20Mathematical/Analytical%20Modelling%20and%20Computer%20Simulation&rft.au=Ahmadi,%20Azizi&rft.date=2010-05&rft.spage=420&rft.epage=423&rft.pages=420-423&rft.issn=2376-1164&rft.isbn=9781424471966&rft.isbn_list=1424471966&rft_id=info:doi/10.1109/AMS.2010.88&rft.eisbn=9780769540627&rft.eisbn_list=9781424471973&rft.eisbn_list=1424471974&rft.eisbn_list=0769540627&rft_dat=%3Cieee_CHZPO%3E5489149%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1278-79efbad844992e9a32e2b44a380023e8e1355b6f578457cc00b0ccced7bd69863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5489149&rfr_iscdi=true