Loading…

Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm

Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to...

Full description

Saved in:
Bibliographic Details
Main Authors: Othman, Mohd Afzan, Safri, Norlaili Mat, Sudirman, Rubita
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 311
container_issue
container_start_page 307
container_title
container_volume
creator Othman, Mohd Afzan
Safri, Norlaili Mat
Sudirman, Rubita
description Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.
doi_str_mv 10.1109/AMS.2010.68
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5489190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5489190</ieee_id><sourcerecordid>5489190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383</originalsourceid><addsrcrecordid>eNotzDtPwzAUBWAjQKIqnRhZ_AdS7o1f8RhVhSK1YmhhrWzHTY0SBzlmKL-e8jjL0TecQ8gdwhwR9EO92c5LOEtWF2SmVQVKasFBlury18hLzhVqKa_IpGRKFoiS35DZOL7DOVyUCDgh7eJoknHZp_BlchgiHQ70zcecgvvsTKJ1SsdTPvbBjDREuuy8y2lwJjVhaJPp6Ta00XT0dQyxpVvfm5iDo5sQf1x37ZDCeX5Lrg-mG_3sv6dk97jcLVbF-uXpeVGvi6AhF8IpIUuOpnJeW-6AOceEFU6D8g3zAA4tR8Us4qHxXNvK6oaBtWWDglVsSu7_boP3fv-RQm_SaS94pVED-wYJrlqe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</creator><creatorcontrib>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</creatorcontrib><description>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</description><identifier>ISSN: 2376-1164</identifier><identifier>ISBN: 9781424471966</identifier><identifier>ISBN: 1424471966</identifier><identifier>EISBN: 9780769540627</identifier><identifier>EISBN: 9781424471973</identifier><identifier>EISBN: 1424471974</identifier><identifier>EISBN: 0769540627</identifier><identifier>DOI: 10.1109/AMS.2010.68</identifier><language>eng</language><publisher>IEEE</publisher><subject>Damping ; Data mining ; ECG ; Electrocardiography ; Feature extraction ; Fibrillation ; Filtration ; Frequency ; heart diseases ; life threatening arrhytmia prediction ; Parameter estimation ; Semantic mining ; Signal processing ; Spatial databases</subject><ispartof>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.307-311</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5489190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5489190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Othman, Mohd Afzan</creatorcontrib><creatorcontrib>Safri, Norlaili Mat</creatorcontrib><creatorcontrib>Sudirman, Rubita</creatorcontrib><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><title>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</title><addtitle>AMS</addtitle><description>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</description><subject>Damping</subject><subject>Data mining</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fibrillation</subject><subject>Filtration</subject><subject>Frequency</subject><subject>heart diseases</subject><subject>life threatening arrhytmia prediction</subject><subject>Parameter estimation</subject><subject>Semantic mining</subject><subject>Signal processing</subject><subject>Spatial databases</subject><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><isbn>9780769540627</isbn><isbn>9781424471973</isbn><isbn>1424471974</isbn><isbn>0769540627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzDtPwzAUBWAjQKIqnRhZ_AdS7o1f8RhVhSK1YmhhrWzHTY0SBzlmKL-e8jjL0TecQ8gdwhwR9EO92c5LOEtWF2SmVQVKasFBlury18hLzhVqKa_IpGRKFoiS35DZOL7DOVyUCDgh7eJoknHZp_BlchgiHQ70zcecgvvsTKJ1SsdTPvbBjDREuuy8y2lwJjVhaJPp6Ta00XT0dQyxpVvfm5iDo5sQf1x37ZDCeX5Lrg-mG_3sv6dk97jcLVbF-uXpeVGvi6AhF8IpIUuOpnJeW-6AOceEFU6D8g3zAA4tR8Us4qHxXNvK6oaBtWWDglVsSu7_boP3fv-RQm_SaS94pVED-wYJrlqe</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Othman, Mohd Afzan</creator><creator>Safri, Norlaili Mat</creator><creator>Sudirman, Rubita</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><author>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Damping</topic><topic>Data mining</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fibrillation</topic><topic>Filtration</topic><topic>Frequency</topic><topic>heart diseases</topic><topic>life threatening arrhytmia prediction</topic><topic>Parameter estimation</topic><topic>Semantic mining</topic><topic>Signal processing</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Othman, Mohd Afzan</creatorcontrib><creatorcontrib>Safri, Norlaili Mat</creatorcontrib><creatorcontrib>Sudirman, Rubita</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Othman, Mohd Afzan</au><au>Safri, Norlaili Mat</au><au>Sudirman, Rubita</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</atitle><btitle>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</btitle><stitle>AMS</stitle><date>2010-05</date><risdate>2010</risdate><spage>307</spage><epage>311</epage><pages>307-311</pages><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><eisbn>9780769540627</eisbn><eisbn>9781424471973</eisbn><eisbn>1424471974</eisbn><eisbn>0769540627</eisbn><abstract>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2010.68</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-1164
ispartof 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.307-311
issn 2376-1164
language eng
recordid cdi_ieee_primary_5489190
source IEEE Xplore All Conference Series
subjects Damping
Data mining
ECG
Electrocardiography
Feature extraction
Fibrillation
Filtration
Frequency
heart diseases
life threatening arrhytmia prediction
Parameter estimation
Semantic mining
Signal processing
Spatial databases
title Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20Ventricular%20Arrhythmias%20in%20Electrocardiogram%20Signal%20Using%20Semantic%20Mining%20Algorithm&rft.btitle=2010%20Fourth%20Asia%20International%20Conference%20on%20Mathematical/Analytical%20Modelling%20and%20Computer%20Simulation&rft.au=Othman,%20Mohd%20Afzan&rft.date=2010-05&rft.spage=307&rft.epage=311&rft.pages=307-311&rft.issn=2376-1164&rft.isbn=9781424471966&rft.isbn_list=1424471966&rft_id=info:doi/10.1109/AMS.2010.68&rft.eisbn=9780769540627&rft.eisbn_list=9781424471973&rft.eisbn_list=1424471974&rft.eisbn_list=0769540627&rft_dat=%3Cieee_CHZPO%3E5489190%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5489190&rfr_iscdi=true