Loading…
Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm
Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 311 |
container_issue | |
container_start_page | 307 |
container_title | |
container_volume | |
creator | Othman, Mohd Afzan Safri, Norlaili Mat Sudirman, Rubita |
description | Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias. |
doi_str_mv | 10.1109/AMS.2010.68 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5489190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5489190</ieee_id><sourcerecordid>5489190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383</originalsourceid><addsrcrecordid>eNotzDtPwzAUBWAjQKIqnRhZ_AdS7o1f8RhVhSK1YmhhrWzHTY0SBzlmKL-e8jjL0TecQ8gdwhwR9EO92c5LOEtWF2SmVQVKasFBlury18hLzhVqKa_IpGRKFoiS35DZOL7DOVyUCDgh7eJoknHZp_BlchgiHQ70zcecgvvsTKJ1SsdTPvbBjDREuuy8y2lwJjVhaJPp6Ta00XT0dQyxpVvfm5iDo5sQf1x37ZDCeX5Lrg-mG_3sv6dk97jcLVbF-uXpeVGvi6AhF8IpIUuOpnJeW-6AOceEFU6D8g3zAA4tR8Us4qHxXNvK6oaBtWWDglVsSu7_boP3fv-RQm_SaS94pVED-wYJrlqe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</creator><creatorcontrib>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</creatorcontrib><description>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</description><identifier>ISSN: 2376-1164</identifier><identifier>ISBN: 9781424471966</identifier><identifier>ISBN: 1424471966</identifier><identifier>EISBN: 9780769540627</identifier><identifier>EISBN: 9781424471973</identifier><identifier>EISBN: 1424471974</identifier><identifier>EISBN: 0769540627</identifier><identifier>DOI: 10.1109/AMS.2010.68</identifier><language>eng</language><publisher>IEEE</publisher><subject>Damping ; Data mining ; ECG ; Electrocardiography ; Feature extraction ; Fibrillation ; Filtration ; Frequency ; heart diseases ; life threatening arrhytmia prediction ; Parameter estimation ; Semantic mining ; Signal processing ; Spatial databases</subject><ispartof>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.307-311</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5489190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5489190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Othman, Mohd Afzan</creatorcontrib><creatorcontrib>Safri, Norlaili Mat</creatorcontrib><creatorcontrib>Sudirman, Rubita</creatorcontrib><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><title>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</title><addtitle>AMS</addtitle><description>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</description><subject>Damping</subject><subject>Data mining</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fibrillation</subject><subject>Filtration</subject><subject>Frequency</subject><subject>heart diseases</subject><subject>life threatening arrhytmia prediction</subject><subject>Parameter estimation</subject><subject>Semantic mining</subject><subject>Signal processing</subject><subject>Spatial databases</subject><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><isbn>9780769540627</isbn><isbn>9781424471973</isbn><isbn>1424471974</isbn><isbn>0769540627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzDtPwzAUBWAjQKIqnRhZ_AdS7o1f8RhVhSK1YmhhrWzHTY0SBzlmKL-e8jjL0TecQ8gdwhwR9EO92c5LOEtWF2SmVQVKasFBlury18hLzhVqKa_IpGRKFoiS35DZOL7DOVyUCDgh7eJoknHZp_BlchgiHQ70zcecgvvsTKJ1SsdTPvbBjDREuuy8y2lwJjVhaJPp6Ta00XT0dQyxpVvfm5iDo5sQf1x37ZDCeX5Lrg-mG_3sv6dk97jcLVbF-uXpeVGvi6AhF8IpIUuOpnJeW-6AOceEFU6D8g3zAA4tR8Us4qHxXNvK6oaBtWWDglVsSu7_boP3fv-RQm_SaS94pVED-wYJrlqe</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Othman, Mohd Afzan</creator><creator>Safri, Norlaili Mat</creator><creator>Sudirman, Rubita</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</title><author>Othman, Mohd Afzan ; Safri, Norlaili Mat ; Sudirman, Rubita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Damping</topic><topic>Data mining</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fibrillation</topic><topic>Filtration</topic><topic>Frequency</topic><topic>heart diseases</topic><topic>life threatening arrhytmia prediction</topic><topic>Parameter estimation</topic><topic>Semantic mining</topic><topic>Signal processing</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Othman, Mohd Afzan</creatorcontrib><creatorcontrib>Safri, Norlaili Mat</creatorcontrib><creatorcontrib>Sudirman, Rubita</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Othman, Mohd Afzan</au><au>Safri, Norlaili Mat</au><au>Sudirman, Rubita</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm</atitle><btitle>2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation</btitle><stitle>AMS</stitle><date>2010-05</date><risdate>2010</risdate><spage>307</spage><epage>311</epage><pages>307-311</pages><issn>2376-1164</issn><isbn>9781424471966</isbn><isbn>1424471966</isbn><eisbn>9780769540627</eisbn><eisbn>9781424471973</eisbn><eisbn>1424471974</eisbn><eisbn>0769540627</eisbn><abstract>Ventricular arrhythmias, especially ventricular fibrillation, is a type of arrhythmias that can cause sudden death. The paper applies semantic mining approach to electrocardiograph (ECG) signals in order to extract its significant characteristics (frequency, damping coefficient and input signal) to be used for classification purpose. Real data from an arrhythmia database are used after noise filtration. After features extraction they are statistically classified into three groups, i.e. normal (N), normal patients (PN) and patients with ventricular arrhythmia (V). We found that the V, PN, and N types of ECG signals can be identified by the extracted parameters. It is estimated that the parameters in semantic algorithm can be use to predict the onset of ventricular arrhythmias.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2010.68</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2376-1164 |
ispartof | 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, p.307-311 |
issn | 2376-1164 |
language | eng |
recordid | cdi_ieee_primary_5489190 |
source | IEEE Xplore All Conference Series |
subjects | Damping Data mining ECG Electrocardiography Feature extraction Fibrillation Filtration Frequency heart diseases life threatening arrhytmia prediction Parameter estimation Semantic mining Signal processing Spatial databases |
title | Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20Ventricular%20Arrhythmias%20in%20Electrocardiogram%20Signal%20Using%20Semantic%20Mining%20Algorithm&rft.btitle=2010%20Fourth%20Asia%20International%20Conference%20on%20Mathematical/Analytical%20Modelling%20and%20Computer%20Simulation&rft.au=Othman,%20Mohd%20Afzan&rft.date=2010-05&rft.spage=307&rft.epage=311&rft.pages=307-311&rft.issn=2376-1164&rft.isbn=9781424471966&rft.isbn_list=1424471966&rft_id=info:doi/10.1109/AMS.2010.68&rft.eisbn=9780769540627&rft.eisbn_list=9781424471973&rft.eisbn_list=1424471974&rft.eisbn_list=0769540627&rft_dat=%3Cieee_CHZPO%3E5489190%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5c756241a8ce9b4c03cc35b5c907ed3e00c1b4173b11fde49b8b9d30bb2d15383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5489190&rfr_iscdi=true |