Loading…

Learning α-integration with partially-labeled data

Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distrib...

Full description

Saved in:
Bibliographic Details
Main Authors: Heeyoul Choi, Seungjin Choi, Katake, Anup, Yoonsuck Choe
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2061
container_issue
container_start_page 2058
container_title
container_volume
creator Heeyoul Choi
Seungjin Choi
Katake, Anup
Yoonsuck Choe
description Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also encompasses existing integration methods as its special case, e.g., weighted average and exponential mixture. In α-integration, the value of α determines the characteristics of the integration and the weight vector w assigns the degree of importance to each measure. In most of the existing work, however, α and w are given in advance rather than learned. In this paper we present two algorithms, for learning α and w from data when only a few integrated target values are available. Numerical experiments on synthetic as well as real-world data confirm the proposed method's effectiveness.
doi_str_mv 10.1109/ICASSP.2010.5495025
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495025</ieee_id><sourcerecordid>5495025</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b74af828411d9f9b25fad1f33a8aee23541e7322f2418e4deec6b87a728b5a0a3</originalsourceid><addsrcrecordid>eNpVj11KAzEUheMfONauoC-zgdTcm2SSPErRKgwoVMG3cse5qZFxLDMB6bLciGuyYF98OnA-OHxHiBmoOYAKV_eL69XqcY5qX1gTrEJ7JKbBeTBojMFQVceiQO2ChKBeTv4xG05FARaVrMCEc3Exju9KKe-ML4SumYY-9Zvy51umPvNmoJw--_Ir5bdyS0NO1HU72VHDHbdlS5kuxVmkbuTpISfi-fbmaXEn64fl3rSWCZzNsnGGokdvANoQQ4M2UgtRa_LEjNoaYKcRIxrwbFrm16rxjhz6xpIiPRGzv93EzOvtkD5o2K0P__UvARRLPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning α-integration with partially-labeled data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heeyoul Choi ; Seungjin Choi ; Katake, Anup ; Yoonsuck Choe</creator><creatorcontrib>Heeyoul Choi ; Seungjin Choi ; Katake, Anup ; Yoonsuck Choe</creatorcontrib><description>Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also encompasses existing integration methods as its special case, e.g., weighted average and exponential mixture. In α-integration, the value of α determines the characteristics of the integration and the weight vector w assigns the degree of importance to each measure. In most of the existing work, however, α and w are given in advance rather than learned. In this paper we present two algorithms, for learning α and w from data when only a few integrated target values are available. Numerical experiments on synthetic as well as real-world data confirm the proposed method's effectiveness.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495025</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Clustering algorithms ; Distributed computing ; Humans ; Inference algorithms ; Machine learning ; Parameter estimation ; Pattern recognition ; Probability distribution ; Stochastic processes ; α-integration</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2058-2061</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heeyoul Choi</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><creatorcontrib>Katake, Anup</creatorcontrib><creatorcontrib>Yoonsuck Choe</creatorcontrib><title>Learning α-integration with partially-labeled data</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also encompasses existing integration methods as its special case, e.g., weighted average and exponential mixture. In α-integration, the value of α determines the characteristics of the integration and the weight vector w assigns the degree of importance to each measure. In most of the existing work, however, α and w are given in advance rather than learned. In this paper we present two algorithms, for learning α and w from data when only a few integrated target values are available. Numerical experiments on synthetic as well as real-world data confirm the proposed method's effectiveness.</description><subject>Brain modeling</subject><subject>Clustering algorithms</subject><subject>Distributed computing</subject><subject>Humans</subject><subject>Inference algorithms</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><subject>Pattern recognition</subject><subject>Probability distribution</subject><subject>Stochastic processes</subject><subject>α-integration</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj11KAzEUheMfONauoC-zgdTcm2SSPErRKgwoVMG3cse5qZFxLDMB6bLciGuyYF98OnA-OHxHiBmoOYAKV_eL69XqcY5qX1gTrEJ7JKbBeTBojMFQVceiQO2ChKBeTv4xG05FARaVrMCEc3Exju9KKe-ML4SumYY-9Zvy51umPvNmoJw--_Ir5bdyS0NO1HU72VHDHbdlS5kuxVmkbuTpISfi-fbmaXEn64fl3rSWCZzNsnGGokdvANoQQ4M2UgtRa_LEjNoaYKcRIxrwbFrm16rxjhz6xpIiPRGzv93EzOvtkD5o2K0P__UvARRLPw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Heeyoul Choi</creator><creator>Seungjin Choi</creator><creator>Katake, Anup</creator><creator>Yoonsuck Choe</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Learning α-integration with partially-labeled data</title><author>Heeyoul Choi ; Seungjin Choi ; Katake, Anup ; Yoonsuck Choe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b74af828411d9f9b25fad1f33a8aee23541e7322f2418e4deec6b87a728b5a0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Brain modeling</topic><topic>Clustering algorithms</topic><topic>Distributed computing</topic><topic>Humans</topic><topic>Inference algorithms</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><topic>Pattern recognition</topic><topic>Probability distribution</topic><topic>Stochastic processes</topic><topic>α-integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Heeyoul Choi</creatorcontrib><creatorcontrib>Seungjin Choi</creatorcontrib><creatorcontrib>Katake, Anup</creatorcontrib><creatorcontrib>Yoonsuck Choe</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heeyoul Choi</au><au>Seungjin Choi</au><au>Katake, Anup</au><au>Yoonsuck Choe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning α-integration with partially-labeled data</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>2058</spage><epage>2061</epage><pages>2058-2061</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also encompasses existing integration methods as its special case, e.g., weighted average and exponential mixture. In α-integration, the value of α determines the characteristics of the integration and the weight vector w assigns the degree of importance to each measure. In most of the existing work, however, α and w are given in advance rather than learned. In this paper we present two algorithms, for learning α and w from data when only a few integrated target values are available. Numerical experiments on synthetic as well as real-world data confirm the proposed method's effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495025</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2058-2061
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495025
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain modeling
Clustering algorithms
Distributed computing
Humans
Inference algorithms
Machine learning
Parameter estimation
Pattern recognition
Probability distribution
Stochastic processes
α-integration
title Learning α-integration with partially-labeled data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20%CE%B1-integration%20with%20partially-labeled%20data&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Heeyoul%20Choi&rft.date=2010-03&rft.spage=2058&rft.epage=2061&rft.pages=2058-2061&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495025&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&rft_dat=%3Cieee_6IE%3E5495025%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b74af828411d9f9b25fad1f33a8aee23541e7322f2418e4deec6b87a728b5a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495025&rfr_iscdi=true