Loading…
Variational Bayesian speaker diarization of meeting recordings
This paper investigates the use of the Variational Bayesian (VB) framework for speaker diarization of meetings data extending previous related works on Broadcast News audio. VB learning aims at maximizing a bound, known as Free Energy, on the model marginal likelihood and allows joint model learning...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4957 |
container_issue | |
container_start_page | 4954 |
container_title | |
container_volume | |
creator | Valente, Fabio Motlicek, Petr Vijayasenan, Deepu |
description | This paper investigates the use of the Variational Bayesian (VB) framework for speaker diarization of meetings data extending previous related works on Broadcast News audio. VB learning aims at maximizing a bound, known as Free Energy, on the model marginal likelihood and allows joint model learning and model selection according to the same objective function. While the BIC is valid only in the asymptotic limit, the Free Energy is always a valid bound. The paper proposes the use of Free Energy as objective function in speaker diarization. It can be used to select dynamically without any supervision or tuning, elements that typically affect the diarization performance i.e. the inferred number of speakers, the size of the GMM and the initialization. The proposed approach is compared with a conventional state-of-the-art system on the RT06 evaluation data for meeting recordings diarization and shows an improvement of 8.4% relative in terms of speaker error. |
doi_str_mv | 10.1109/ICASSP.2010.5495087 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495087</ieee_id><sourcerecordid>5495087</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-ac92f1ce07a67468f29f3efbf09d567cc6d5ad8b6c47c7d2ba6bdca8fa1be0ca3</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheMNHGufoJu8wNQkk-tG0FIvUFCoirvyT_JHou1MSbqpT--g3bg6h_PB4XAImXA25Zy5q8fZzXL5PBVsCJR0illzRMbOWC6FlFI4rY9JJRrjau7Y-8k_ptwpqbgSrNZcunNyUconY0OFtBW5foOcYJf6Dtb0FvZYEnS0bBG-MNOQBvr9i2kf6QZxl7oPmtH3OQyuXJKzCOuC44OOyOvd_GX2UC-e7ofRizoJyXc1eCci98gMaCO1jcLFBmMbmQtKG-91UBBsq7003gTRgm6DBxuBt8g8NCMy-etNiLja5rSBvF8drmh-APV6UJo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Variational Bayesian speaker diarization of meeting recordings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Valente, Fabio ; Motlicek, Petr ; Vijayasenan, Deepu</creator><creatorcontrib>Valente, Fabio ; Motlicek, Petr ; Vijayasenan, Deepu</creatorcontrib><description>This paper investigates the use of the Variational Bayesian (VB) framework for speaker diarization of meetings data extending previous related works on Broadcast News audio. VB learning aims at maximizing a bound, known as Free Energy, on the model marginal likelihood and allows joint model learning and model selection according to the same objective function. While the BIC is valid only in the asymptotic limit, the Free Energy is always a valid bound. The paper proposes the use of Free Energy as objective function in speaker diarization. It can be used to select dynamically without any supervision or tuning, elements that typically affect the diarization performance i.e. the inferred number of speakers, the size of the GMM and the initialization. The proposed approach is compared with a conventional state-of-the-art system on the RT06 evaluation data for meeting recordings diarization and shows an improvement of 8.4% relative in terms of speaker error.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495087</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Broadcasting ; Density estimation robust algorithm ; Error analysis ; Meetings Data ; Microphones ; Probability ; Speaker Diarization ; Variational Bayesian Methods</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4954-4957</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valente, Fabio</creatorcontrib><creatorcontrib>Motlicek, Petr</creatorcontrib><creatorcontrib>Vijayasenan, Deepu</creatorcontrib><title>Variational Bayesian speaker diarization of meeting recordings</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This paper investigates the use of the Variational Bayesian (VB) framework for speaker diarization of meetings data extending previous related works on Broadcast News audio. VB learning aims at maximizing a bound, known as Free Energy, on the model marginal likelihood and allows joint model learning and model selection according to the same objective function. While the BIC is valid only in the asymptotic limit, the Free Energy is always a valid bound. The paper proposes the use of Free Energy as objective function in speaker diarization. It can be used to select dynamically without any supervision or tuning, elements that typically affect the diarization performance i.e. the inferred number of speakers, the size of the GMM and the initialization. The proposed approach is compared with a conventional state-of-the-art system on the RT06 evaluation data for meeting recordings diarization and shows an improvement of 8.4% relative in terms of speaker error.</description><subject>Bayesian methods</subject><subject>Broadcasting</subject><subject>Density estimation robust algorithm</subject><subject>Error analysis</subject><subject>Meetings Data</subject><subject>Microphones</subject><subject>Probability</subject><subject>Speaker Diarization</subject><subject>Variational Bayesian Methods</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKAzEYheMNHGufoJu8wNQkk-tG0FIvUFCoirvyT_JHou1MSbqpT--g3bg6h_PB4XAImXA25Zy5q8fZzXL5PBVsCJR0illzRMbOWC6FlFI4rY9JJRrjau7Y-8k_ptwpqbgSrNZcunNyUconY0OFtBW5foOcYJf6Dtb0FvZYEnS0bBG-MNOQBvr9i2kf6QZxl7oPmtH3OQyuXJKzCOuC44OOyOvd_GX2UC-e7ofRizoJyXc1eCci98gMaCO1jcLFBmMbmQtKG-91UBBsq7003gTRgm6DBxuBt8g8NCMy-etNiLja5rSBvF8drmh-APV6UJo</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Valente, Fabio</creator><creator>Motlicek, Petr</creator><creator>Vijayasenan, Deepu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Variational Bayesian speaker diarization of meeting recordings</title><author>Valente, Fabio ; Motlicek, Petr ; Vijayasenan, Deepu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-ac92f1ce07a67468f29f3efbf09d567cc6d5ad8b6c47c7d2ba6bdca8fa1be0ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian methods</topic><topic>Broadcasting</topic><topic>Density estimation robust algorithm</topic><topic>Error analysis</topic><topic>Meetings Data</topic><topic>Microphones</topic><topic>Probability</topic><topic>Speaker Diarization</topic><topic>Variational Bayesian Methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Valente, Fabio</creatorcontrib><creatorcontrib>Motlicek, Petr</creatorcontrib><creatorcontrib>Vijayasenan, Deepu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valente, Fabio</au><au>Motlicek, Petr</au><au>Vijayasenan, Deepu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variational Bayesian speaker diarization of meeting recordings</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>4954</spage><epage>4957</epage><pages>4954-4957</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>This paper investigates the use of the Variational Bayesian (VB) framework for speaker diarization of meetings data extending previous related works on Broadcast News audio. VB learning aims at maximizing a bound, known as Free Energy, on the model marginal likelihood and allows joint model learning and model selection according to the same objective function. While the BIC is valid only in the asymptotic limit, the Free Energy is always a valid bound. The paper proposes the use of Free Energy as objective function in speaker diarization. It can be used to select dynamically without any supervision or tuning, elements that typically affect the diarization performance i.e. the inferred number of speakers, the size of the GMM and the initialization. The proposed approach is compared with a conventional state-of-the-art system on the RT06 evaluation data for meeting recordings diarization and shows an improvement of 8.4% relative in terms of speaker error.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495087</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4954-4957 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5495087 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Broadcasting Density estimation robust algorithm Error analysis Meetings Data Microphones Probability Speaker Diarization Variational Bayesian Methods |
title | Variational Bayesian speaker diarization of meeting recordings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variational%20Bayesian%20speaker%20diarization%20of%20meeting%20recordings&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Valente,%20Fabio&rft.date=2010-01-01&rft.spage=4954&rft.epage=4957&rft.pages=4954-4957&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495087&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&rft_dat=%3Cieee_6IE%3E5495087%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-ac92f1ce07a67468f29f3efbf09d567cc6d5ad8b6c47c7d2ba6bdca8fa1be0ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495087&rfr_iscdi=true |