Loading…

A fuzzy adaptive Genetic Algorithms for global optimization problems

Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature conve...

Full description

Saved in:
Bibliographic Details
Main Authors: Liqun Gao, Feng Lu, Yanfeng Ge, Da Feng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 919
container_issue
container_start_page 914
container_title
container_volume
creator Liqun Gao
Feng Lu
Yanfeng Ge
Da Feng
description Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.
doi_str_mv 10.1109/CCDC.2010.5498091
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498091</ieee_id><sourcerecordid>5498091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873</originalsourceid><addsrcrecordid>eNpFUM1OwzAYCz-T2MYeAHHJC3Tky0-_5jh1MJAmcYHzlGTJCGqXqi1I69NTiQl8sS1bPpiQO2BLAKYfynJdLjkbrZK6YBouyAwkl1JBwdUlmYKWRaalxKv_APD6LxB6QmacMa2FFAJuyKLrPtkIqTggTsl6RcPXMJyo2Zumj9-ebvzR99HRVXVIbew_6o6G1NJDlaypaBpLdRxMH9ORNm2yla-7WzIJpur84sxz8v70-FY-Z9vXzUu52mYRUPUZt0aG3KJ3BtFxyLnGIiCqPKBWaJliGsMoXJ47MMwIC9p4h8HxPRYo5uT-dzd673dNG2vTnnbna8QPWdVRcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</creator><creatorcontrib>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</creatorcontrib><description>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498091</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Evolution (biology) ; evolutionary algorithm ; Fuzzy control ; fuzzy logical ; Genetic algorithms ; genetic algorithms (GA) ; Genetic mutations ; Global optimization ; Negative feedback ; Optimization methods ; parameter adaptation ; Process control ; Programmable control ; Testing</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.914-919</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liqun Gao</creatorcontrib><creatorcontrib>Feng Lu</creatorcontrib><creatorcontrib>Yanfeng Ge</creatorcontrib><creatorcontrib>Da Feng</creatorcontrib><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</description><subject>Adaptive control</subject><subject>Evolution (biology)</subject><subject>evolutionary algorithm</subject><subject>Fuzzy control</subject><subject>fuzzy logical</subject><subject>Genetic algorithms</subject><subject>genetic algorithms (GA)</subject><subject>Genetic mutations</subject><subject>Global optimization</subject><subject>Negative feedback</subject><subject>Optimization methods</subject><subject>parameter adaptation</subject><subject>Process control</subject><subject>Programmable control</subject><subject>Testing</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUM1OwzAYCz-T2MYeAHHJC3Tky0-_5jh1MJAmcYHzlGTJCGqXqi1I69NTiQl8sS1bPpiQO2BLAKYfynJdLjkbrZK6YBouyAwkl1JBwdUlmYKWRaalxKv_APD6LxB6QmacMa2FFAJuyKLrPtkIqTggTsl6RcPXMJyo2Zumj9-ebvzR99HRVXVIbew_6o6G1NJDlaypaBpLdRxMH9ORNm2yla-7WzIJpur84sxz8v70-FY-Z9vXzUu52mYRUPUZt0aG3KJ3BtFxyLnGIiCqPKBWaJliGsMoXJ47MMwIC9p4h8HxPRYo5uT-dzd673dNG2vTnnbna8QPWdVRcw</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Liqun Gao</creator><creator>Feng Lu</creator><creator>Yanfeng Ge</creator><creator>Da Feng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><author>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive control</topic><topic>Evolution (biology)</topic><topic>evolutionary algorithm</topic><topic>Fuzzy control</topic><topic>fuzzy logical</topic><topic>Genetic algorithms</topic><topic>genetic algorithms (GA)</topic><topic>Genetic mutations</topic><topic>Global optimization</topic><topic>Negative feedback</topic><topic>Optimization methods</topic><topic>parameter adaptation</topic><topic>Process control</topic><topic>Programmable control</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Liqun Gao</creatorcontrib><creatorcontrib>Feng Lu</creatorcontrib><creatorcontrib>Yanfeng Ge</creatorcontrib><creatorcontrib>Da Feng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liqun Gao</au><au>Feng Lu</au><au>Yanfeng Ge</au><au>Da Feng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fuzzy adaptive Genetic Algorithms for global optimization problems</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>914</spage><epage>919</epage><pages>914-919</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498091</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.914-919
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498091
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Evolution (biology)
evolutionary algorithm
Fuzzy control
fuzzy logical
Genetic algorithms
genetic algorithms (GA)
Genetic mutations
Global optimization
Negative feedback
Optimization methods
parameter adaptation
Process control
Programmable control
Testing
title A fuzzy adaptive Genetic Algorithms for global optimization problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fuzzy%20adaptive%20Genetic%20Algorithms%20for%20global%20optimization%20problems&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Liqun%20Gao&rft.date=2010-05&rft.spage=914&rft.epage=919&rft.pages=914-919&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498091&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_6IE%3E5498091%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498091&rfr_iscdi=true