Loading…
A fuzzy adaptive Genetic Algorithms for global optimization problems
Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature conve...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 919 |
container_issue | |
container_start_page | 914 |
container_title | |
container_volume | |
creator | Liqun Gao Feng Lu Yanfeng Ge Da Feng |
description | Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result. |
doi_str_mv | 10.1109/CCDC.2010.5498091 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498091</ieee_id><sourcerecordid>5498091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873</originalsourceid><addsrcrecordid>eNpFUM1OwzAYCz-T2MYeAHHJC3Tky0-_5jh1MJAmcYHzlGTJCGqXqi1I69NTiQl8sS1bPpiQO2BLAKYfynJdLjkbrZK6YBouyAwkl1JBwdUlmYKWRaalxKv_APD6LxB6QmacMa2FFAJuyKLrPtkIqTggTsl6RcPXMJyo2Zumj9-ebvzR99HRVXVIbew_6o6G1NJDlaypaBpLdRxMH9ORNm2yla-7WzIJpur84sxz8v70-FY-Z9vXzUu52mYRUPUZt0aG3KJ3BtFxyLnGIiCqPKBWaJliGsMoXJ47MMwIC9p4h8HxPRYo5uT-dzd673dNG2vTnnbna8QPWdVRcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</creator><creatorcontrib>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</creatorcontrib><description>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498091</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Evolution (biology) ; evolutionary algorithm ; Fuzzy control ; fuzzy logical ; Genetic algorithms ; genetic algorithms (GA) ; Genetic mutations ; Global optimization ; Negative feedback ; Optimization methods ; parameter adaptation ; Process control ; Programmable control ; Testing</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.914-919</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liqun Gao</creatorcontrib><creatorcontrib>Feng Lu</creatorcontrib><creatorcontrib>Yanfeng Ge</creatorcontrib><creatorcontrib>Da Feng</creatorcontrib><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</description><subject>Adaptive control</subject><subject>Evolution (biology)</subject><subject>evolutionary algorithm</subject><subject>Fuzzy control</subject><subject>fuzzy logical</subject><subject>Genetic algorithms</subject><subject>genetic algorithms (GA)</subject><subject>Genetic mutations</subject><subject>Global optimization</subject><subject>Negative feedback</subject><subject>Optimization methods</subject><subject>parameter adaptation</subject><subject>Process control</subject><subject>Programmable control</subject><subject>Testing</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUM1OwzAYCz-T2MYeAHHJC3Tky0-_5jh1MJAmcYHzlGTJCGqXqi1I69NTiQl8sS1bPpiQO2BLAKYfynJdLjkbrZK6YBouyAwkl1JBwdUlmYKWRaalxKv_APD6LxB6QmacMa2FFAJuyKLrPtkIqTggTsl6RcPXMJyo2Zumj9-ebvzR99HRVXVIbew_6o6G1NJDlaypaBpLdRxMH9ORNm2yla-7WzIJpur84sxz8v70-FY-Z9vXzUu52mYRUPUZt0aG3KJ3BtFxyLnGIiCqPKBWaJliGsMoXJ47MMwIC9p4h8HxPRYo5uT-dzd673dNG2vTnnbna8QPWdVRcw</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Liqun Gao</creator><creator>Feng Lu</creator><creator>Yanfeng Ge</creator><creator>Da Feng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>A fuzzy adaptive Genetic Algorithms for global optimization problems</title><author>Liqun Gao ; Feng Lu ; Yanfeng Ge ; Da Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive control</topic><topic>Evolution (biology)</topic><topic>evolutionary algorithm</topic><topic>Fuzzy control</topic><topic>fuzzy logical</topic><topic>Genetic algorithms</topic><topic>genetic algorithms (GA)</topic><topic>Genetic mutations</topic><topic>Global optimization</topic><topic>Negative feedback</topic><topic>Optimization methods</topic><topic>parameter adaptation</topic><topic>Process control</topic><topic>Programmable control</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Liqun Gao</creatorcontrib><creatorcontrib>Feng Lu</creatorcontrib><creatorcontrib>Yanfeng Ge</creatorcontrib><creatorcontrib>Da Feng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liqun Gao</au><au>Feng Lu</au><au>Yanfeng Ge</au><au>Da Feng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fuzzy adaptive Genetic Algorithms for global optimization problems</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>914</spage><epage>919</epage><pages>914-919</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Genetic Algorithms (GA) is a method based on natural selection in the theory of biological evolution, which has been widely applied to solve numerous optimization problems in diverse fields. However, the canonical GA is more likely to get stuck at a local optimum and thereby leads to premature convergence. To overcome such inconvenience, a fuzzy adaptive GA (FAGA) is proposed based on fuzzy clustering and adaptation policy of parameters control (probabilities of crossover and mutation, p c , p m respectively). Sufficiently analyzing the solution state and dynamically allocating different individuals with moderate properties, the core idea of the schema, are to maintain diversity in the population in order to cope with the deception multiple local optima. Self-adaptive adjust of p c , p m which is considered to be an optimal balance between exploration and exploitation. Fuzzy cluster in the approach depends on the rank of fitness, which has three categories during the whole search process; parameter control is based on the technique of negative feedback, which relieves the burden of specifying the values. The performance of the new approach is test on a set of standard benchmark functions and compares with traditional and adapted GA which has a better result.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498091</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2010 Chinese Control and Decision Conference, 2010, p.914-919 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5498091 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive control Evolution (biology) evolutionary algorithm Fuzzy control fuzzy logical Genetic algorithms genetic algorithms (GA) Genetic mutations Global optimization Negative feedback Optimization methods parameter adaptation Process control Programmable control Testing |
title | A fuzzy adaptive Genetic Algorithms for global optimization problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fuzzy%20adaptive%20Genetic%20Algorithms%20for%20global%20optimization%20problems&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Liqun%20Gao&rft.date=2010-05&rft.spage=914&rft.epage=919&rft.pages=914-919&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498091&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_6IE%3E5498091%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2ba4f6b7eca77c2162978f7756f7957b05097f57bc66c1a0a3b19aec7fc2d7873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498091&rfr_iscdi=true |