Loading…
Hybrid particle swarm optimization-simplex algorithm for inverse problem
Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization al...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3442 |
container_issue | |
container_start_page | 3439 |
container_title | |
container_volume | |
creator | Nie, Ru Yue, Jian-hua Deng, Shuai-qi |
description | Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems. |
doi_str_mv | 10.1109/CCDC.2010.5498561 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498561</ieee_id><sourcerecordid>5498561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhNefgm3tA4g3-wKpe_YnJ3spsRqh4E3vyyY50ZVsEzZBrU9vwKJzMwwfDMwwdgNiDSDsXZ4_5Gsppmi0zUwKZ2wBWmptIJPmnM3B6iyxWuPFPwC8_APKzthCCmGt0krBFVsNw7uYpI0ExDkrimMZfc17F0dftcSHTxcD7_rRB__tRt8dksGHvqUv7trXLvrxLfCmi9wfPigOxPvYlS2FazZrXDvQ6uRLtnvc7PIi2b48Pef328QDmjGxQIBUNzJNsdQITY3KaVmaVBgh0TqyiEqSnbZIqCYr62xaVQkpKgS1ZLe_tZ6I9n30wcXj_vSO-gG_vVH3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</creator><creatorcontrib>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</creatorcontrib><description>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498561</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Convergence ; Design optimization ; Electronic mail ; Geoscience ; hybrid algorithm ; Impedance ; inverse problem ; Inverse problems ; Optimization methods ; Particle swarm optimization ; PSO ; Search methods ; simplex method</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.3439-3442</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Ru</creatorcontrib><creatorcontrib>Yue, Jian-hua</creatorcontrib><creatorcontrib>Deng, Shuai-qi</creatorcontrib><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</description><subject>Computer science</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Electronic mail</subject><subject>Geoscience</subject><subject>hybrid algorithm</subject><subject>Impedance</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><subject>PSO</subject><subject>Search methods</subject><subject>simplex method</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkN1Kw0AUhNefgm3tA4g3-wKpe_YnJ3spsRqh4E3vyyY50ZVsEzZBrU9vwKJzMwwfDMwwdgNiDSDsXZ4_5Gsppmi0zUwKZ2wBWmptIJPmnM3B6iyxWuPFPwC8_APKzthCCmGt0krBFVsNw7uYpI0ExDkrimMZfc17F0dftcSHTxcD7_rRB__tRt8dksGHvqUv7trXLvrxLfCmi9wfPigOxPvYlS2FazZrXDvQ6uRLtnvc7PIi2b48Pef328QDmjGxQIBUNzJNsdQITY3KaVmaVBgh0TqyiEqSnbZIqCYr62xaVQkpKgS1ZLe_tZ6I9n30wcXj_vSO-gG_vVH3</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Nie, Ru</creator><creator>Yue, Jian-hua</creator><creator>Deng, Shuai-qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><author>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer science</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Electronic mail</topic><topic>Geoscience</topic><topic>hybrid algorithm</topic><topic>Impedance</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><topic>PSO</topic><topic>Search methods</topic><topic>simplex method</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Ru</creatorcontrib><creatorcontrib>Yue, Jian-hua</creatorcontrib><creatorcontrib>Deng, Shuai-qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Ru</au><au>Yue, Jian-hua</au><au>Deng, Shuai-qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid particle swarm optimization-simplex algorithm for inverse problem</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>3439</spage><epage>3442</epage><pages>3439-3442</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498561</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2010 Chinese Control and Decision Conference, 2010, p.3439-3442 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5498561 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Convergence Design optimization Electronic mail Geoscience hybrid algorithm Impedance inverse problem Inverse problems Optimization methods Particle swarm optimization PSO Search methods simplex method |
title | Hybrid particle swarm optimization-simplex algorithm for inverse problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20particle%20swarm%20optimization-simplex%20algorithm%20for%20inverse%20problem&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Nie,%20Ru&rft.date=2010-05&rft.spage=3439&rft.epage=3442&rft.pages=3439-3442&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498561&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_6IE%3E5498561%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498561&rfr_iscdi=true |