Loading…

Hybrid particle swarm optimization-simplex algorithm for inverse problem

Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization al...

Full description

Saved in:
Bibliographic Details
Main Authors: Nie, Ru, Yue, Jian-hua, Deng, Shuai-qi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3442
container_issue
container_start_page 3439
container_title
container_volume
creator Nie, Ru
Yue, Jian-hua
Deng, Shuai-qi
description Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.
doi_str_mv 10.1109/CCDC.2010.5498561
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498561</ieee_id><sourcerecordid>5498561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhNefgm3tA4g3-wKpe_YnJ3spsRqh4E3vyyY50ZVsEzZBrU9vwKJzMwwfDMwwdgNiDSDsXZ4_5Gsppmi0zUwKZ2wBWmptIJPmnM3B6iyxWuPFPwC8_APKzthCCmGt0krBFVsNw7uYpI0ExDkrimMZfc17F0dftcSHTxcD7_rRB__tRt8dksGHvqUv7trXLvrxLfCmi9wfPigOxPvYlS2FazZrXDvQ6uRLtnvc7PIi2b48Pef328QDmjGxQIBUNzJNsdQITY3KaVmaVBgh0TqyiEqSnbZIqCYr62xaVQkpKgS1ZLe_tZ6I9n30wcXj_vSO-gG_vVH3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</creator><creatorcontrib>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</creatorcontrib><description>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498561</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Convergence ; Design optimization ; Electronic mail ; Geoscience ; hybrid algorithm ; Impedance ; inverse problem ; Inverse problems ; Optimization methods ; Particle swarm optimization ; PSO ; Search methods ; simplex method</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.3439-3442</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Ru</creatorcontrib><creatorcontrib>Yue, Jian-hua</creatorcontrib><creatorcontrib>Deng, Shuai-qi</creatorcontrib><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</description><subject>Computer science</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Electronic mail</subject><subject>Geoscience</subject><subject>hybrid algorithm</subject><subject>Impedance</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><subject>PSO</subject><subject>Search methods</subject><subject>simplex method</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkN1Kw0AUhNefgm3tA4g3-wKpe_YnJ3spsRqh4E3vyyY50ZVsEzZBrU9vwKJzMwwfDMwwdgNiDSDsXZ4_5Gsppmi0zUwKZ2wBWmptIJPmnM3B6iyxWuPFPwC8_APKzthCCmGt0krBFVsNw7uYpI0ExDkrimMZfc17F0dftcSHTxcD7_rRB__tRt8dksGHvqUv7trXLvrxLfCmi9wfPigOxPvYlS2FazZrXDvQ6uRLtnvc7PIi2b48Pef328QDmjGxQIBUNzJNsdQITY3KaVmaVBgh0TqyiEqSnbZIqCYr62xaVQkpKgS1ZLe_tZ6I9n30wcXj_vSO-gG_vVH3</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Nie, Ru</creator><creator>Yue, Jian-hua</creator><creator>Deng, Shuai-qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Hybrid particle swarm optimization-simplex algorithm for inverse problem</title><author>Nie, Ru ; Yue, Jian-hua ; Deng, Shuai-qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer science</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Electronic mail</topic><topic>Geoscience</topic><topic>hybrid algorithm</topic><topic>Impedance</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><topic>PSO</topic><topic>Search methods</topic><topic>simplex method</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Ru</creatorcontrib><creatorcontrib>Yue, Jian-hua</creatorcontrib><creatorcontrib>Deng, Shuai-qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Ru</au><au>Yue, Jian-hua</au><au>Deng, Shuai-qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid particle swarm optimization-simplex algorithm for inverse problem</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>3439</spage><epage>3442</epage><pages>3439-3442</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Inverse problem requiring repeated forward computation is a hard ill-posed problem. Traditional linear inversion methods like Newton method and Newton-like methods may not be optimal convergent if a good initial estimate cannot be provided. Considering that the exiting particle swarm optimization algorithm(PSO) can not take evolution speed and solution quality into account at the same time, a hybrid simplex particle swarm optimization algorithm (HPSO) which combines simplex method with PSO is proposed for wave impedance inverse problem. Application example shows that the proposed algorithm possesses the advantages of both PSO and simplex search method, which have the features of quick convergence and high accuracy of identification. The proposed algorithm is an efficient tool for wave impedance inverse and it performs much better than PSO on such problems.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498561</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.3439-3442
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498561
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Convergence
Design optimization
Electronic mail
Geoscience
hybrid algorithm
Impedance
inverse problem
Inverse problems
Optimization methods
Particle swarm optimization
PSO
Search methods
simplex method
title Hybrid particle swarm optimization-simplex algorithm for inverse problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20particle%20swarm%20optimization-simplex%20algorithm%20for%20inverse%20problem&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Nie,%20Ru&rft.date=2010-05&rft.spage=3439&rft.epage=3442&rft.pages=3439-3442&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498561&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_6IE%3E5498561%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-91e17edf2667b471fd73a42b56050279ae97732e924421c924bd8451c020c713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498561&rfr_iscdi=true