Loading…
Based on BP network terminal quality prediction for BOF steelmaking process
The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2667 |
container_issue | |
container_start_page | 2663 |
container_title | |
container_volume | |
creator | Guicheng Wang Xiangping Kong Zhansheng Zhang Wendan Zhao Shuzhi Gao Xinhe Xu |
description | The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation. |
doi_str_mv | 10.1109/CCDC.2010.5498736 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5498736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498736</ieee_id><sourcerecordid>5498736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc2jEm3pByA2_oEUjz2O4yUJFBCVygLWlZM4yDSPEhuh_j2WqGA2o9G5Gh1dQq6ALQGYvimKu2LJWTwl6kyJ9ITMADmihIzLUzIFjVmiEdXZPwB1_geEnpAZZ0xrgULABVl4_8HioOSg1JQ858bbmg49zV9ob8P3MO5osGPnetPSzy_TunCg-9HWrgouxpphpPlmRX2wtu3MzvXvEQ-V9f6STBrTers47jl5W92_Fo_JevPwVNyuEwdKhiSaMFOBaGrFUBgGElPOVSp0mVZS8rJCKLNaRXkGTapSKI2py1Jy01jeaDEn179_nbV2ux9dZ8bD9tiQ-AFT-1Lb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><source>IEEE Xplore All Conference Series</source><creator>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</creator><creatorcontrib>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</creatorcontrib><description>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498736</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>BOF Steelmaking ; BP Network Model ; Continuous production ; Furnaces ; Neural networks ; Predictive models ; Process control ; Quality control ; Quality Evaluation ; Refining ; Smelting ; Steel ; Temperature control ; Terminal Prediction</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.2663-2667</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guicheng Wang</creatorcontrib><creatorcontrib>Xiangping Kong</creatorcontrib><creatorcontrib>Zhansheng Zhang</creatorcontrib><creatorcontrib>Wendan Zhao</creatorcontrib><creatorcontrib>Shuzhi Gao</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</description><subject>BOF Steelmaking</subject><subject>BP Network Model</subject><subject>Continuous production</subject><subject>Furnaces</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Quality control</subject><subject>Quality Evaluation</subject><subject>Refining</subject><subject>Smelting</subject><subject>Steel</subject><subject>Temperature control</subject><subject>Terminal Prediction</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAQRc2jEm3pByA2_oEUjz2O4yUJFBCVygLWlZM4yDSPEhuh_j2WqGA2o9G5Gh1dQq6ALQGYvimKu2LJWTwl6kyJ9ITMADmihIzLUzIFjVmiEdXZPwB1_geEnpAZZ0xrgULABVl4_8HioOSg1JQ858bbmg49zV9ob8P3MO5osGPnetPSzy_TunCg-9HWrgouxpphpPlmRX2wtu3MzvXvEQ-V9f6STBrTers47jl5W92_Fo_JevPwVNyuEwdKhiSaMFOBaGrFUBgGElPOVSp0mVZS8rJCKLNaRXkGTapSKI2py1Jy01jeaDEn179_nbV2ux9dZ8bD9tiQ-AFT-1Lb</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Guicheng Wang</creator><creator>Xiangping Kong</creator><creator>Zhansheng Zhang</creator><creator>Wendan Zhao</creator><creator>Shuzhi Gao</creator><creator>Xinhe Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><author>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BOF Steelmaking</topic><topic>BP Network Model</topic><topic>Continuous production</topic><topic>Furnaces</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Quality control</topic><topic>Quality Evaluation</topic><topic>Refining</topic><topic>Smelting</topic><topic>Steel</topic><topic>Temperature control</topic><topic>Terminal Prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Guicheng Wang</creatorcontrib><creatorcontrib>Xiangping Kong</creatorcontrib><creatorcontrib>Zhansheng Zhang</creatorcontrib><creatorcontrib>Wendan Zhao</creatorcontrib><creatorcontrib>Shuzhi Gao</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guicheng Wang</au><au>Xiangping Kong</au><au>Zhansheng Zhang</au><au>Wendan Zhao</au><au>Shuzhi Gao</au><au>Xinhe Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Based on BP network terminal quality prediction for BOF steelmaking process</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>2663</spage><epage>2667</epage><pages>2663-2667</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498736</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2010 Chinese Control and Decision Conference, 2010, p.2663-2667 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5498736 |
source | IEEE Xplore All Conference Series |
subjects | BOF Steelmaking BP Network Model Continuous production Furnaces Neural networks Predictive models Process control Quality control Quality Evaluation Refining Smelting Steel Temperature control Terminal Prediction |
title | Based on BP network terminal quality prediction for BOF steelmaking process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Based%20on%20BP%20network%20terminal%20quality%20prediction%20for%20BOF%20steelmaking%20process&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Guicheng%20Wang&rft.date=2010-05&rft.spage=2663&rft.epage=2667&rft.pages=2663-2667&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498736&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_CHZPO%3E5498736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498736&rfr_iscdi=true |