Loading…

Based on BP network terminal quality prediction for BOF steelmaking process

The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of...

Full description

Saved in:
Bibliographic Details
Main Authors: Guicheng Wang, Xiangping Kong, Zhansheng Zhang, Wendan Zhao, Shuzhi Gao, Xinhe Xu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2667
container_issue
container_start_page 2663
container_title
container_volume
creator Guicheng Wang
Xiangping Kong
Zhansheng Zhang
Wendan Zhao
Shuzhi Gao
Xinhe Xu
description The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.
doi_str_mv 10.1109/CCDC.2010.5498736
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5498736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498736</ieee_id><sourcerecordid>5498736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc2jEm3pByA2_oEUjz2O4yUJFBCVygLWlZM4yDSPEhuh_j2WqGA2o9G5Gh1dQq6ALQGYvimKu2LJWTwl6kyJ9ITMADmihIzLUzIFjVmiEdXZPwB1_geEnpAZZ0xrgULABVl4_8HioOSg1JQ858bbmg49zV9ob8P3MO5osGPnetPSzy_TunCg-9HWrgouxpphpPlmRX2wtu3MzvXvEQ-V9f6STBrTers47jl5W92_Fo_JevPwVNyuEwdKhiSaMFOBaGrFUBgGElPOVSp0mVZS8rJCKLNaRXkGTapSKI2py1Jy01jeaDEn179_nbV2ux9dZ8bD9tiQ-AFT-1Lb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><source>IEEE Xplore All Conference Series</source><creator>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</creator><creatorcontrib>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</creatorcontrib><description>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498736</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>BOF Steelmaking ; BP Network Model ; Continuous production ; Furnaces ; Neural networks ; Predictive models ; Process control ; Quality control ; Quality Evaluation ; Refining ; Smelting ; Steel ; Temperature control ; Terminal Prediction</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.2663-2667</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guicheng Wang</creatorcontrib><creatorcontrib>Xiangping Kong</creatorcontrib><creatorcontrib>Zhansheng Zhang</creatorcontrib><creatorcontrib>Wendan Zhao</creatorcontrib><creatorcontrib>Shuzhi Gao</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</description><subject>BOF Steelmaking</subject><subject>BP Network Model</subject><subject>Continuous production</subject><subject>Furnaces</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Quality control</subject><subject>Quality Evaluation</subject><subject>Refining</subject><subject>Smelting</subject><subject>Steel</subject><subject>Temperature control</subject><subject>Terminal Prediction</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAQRc2jEm3pByA2_oEUjz2O4yUJFBCVygLWlZM4yDSPEhuh_j2WqGA2o9G5Gh1dQq6ALQGYvimKu2LJWTwl6kyJ9ITMADmihIzLUzIFjVmiEdXZPwB1_geEnpAZZ0xrgULABVl4_8HioOSg1JQ858bbmg49zV9ob8P3MO5osGPnetPSzy_TunCg-9HWrgouxpphpPlmRX2wtu3MzvXvEQ-V9f6STBrTers47jl5W92_Fo_JevPwVNyuEwdKhiSaMFOBaGrFUBgGElPOVSp0mVZS8rJCKLNaRXkGTapSKI2py1Jy01jeaDEn179_nbV2ux9dZ8bD9tiQ-AFT-1Lb</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Guicheng Wang</creator><creator>Xiangping Kong</creator><creator>Zhansheng Zhang</creator><creator>Wendan Zhao</creator><creator>Shuzhi Gao</creator><creator>Xinhe Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Based on BP network terminal quality prediction for BOF steelmaking process</title><author>Guicheng Wang ; Xiangping Kong ; Zhansheng Zhang ; Wendan Zhao ; Shuzhi Gao ; Xinhe Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BOF Steelmaking</topic><topic>BP Network Model</topic><topic>Continuous production</topic><topic>Furnaces</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Quality control</topic><topic>Quality Evaluation</topic><topic>Refining</topic><topic>Smelting</topic><topic>Steel</topic><topic>Temperature control</topic><topic>Terminal Prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Guicheng Wang</creatorcontrib><creatorcontrib>Xiangping Kong</creatorcontrib><creatorcontrib>Zhansheng Zhang</creatorcontrib><creatorcontrib>Wendan Zhao</creatorcontrib><creatorcontrib>Shuzhi Gao</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guicheng Wang</au><au>Xiangping Kong</au><au>Zhansheng Zhang</au><au>Wendan Zhao</au><au>Shuzhi Gao</au><au>Xinhe Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Based on BP network terminal quality prediction for BOF steelmaking process</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>2663</spage><epage>2667</epage><pages>2663-2667</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>The aspect of impact on the quality of steel is considered, according to the actual production process data in a refinery, BP neural network is applied to establish the steel quality forecasting model, which would improve steel making rate as a target. Based on existing Manage Information System of steelmaking factory, the factors which impact to hit ratio of steel's kinds are investigated in details. A quality control model for the appropriate steelmaking process is studied, and the black box model of BOF steelmaking terminal prediction and process optimization is established. The results show that the steel pre-evaluation system is designed based on BP neural network to benefit for steel quality evaluation.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498736</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.2663-2667
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498736
source IEEE Xplore All Conference Series
subjects BOF Steelmaking
BP Network Model
Continuous production
Furnaces
Neural networks
Predictive models
Process control
Quality control
Quality Evaluation
Refining
Smelting
Steel
Temperature control
Terminal Prediction
title Based on BP network terminal quality prediction for BOF steelmaking process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Based%20on%20BP%20network%20terminal%20quality%20prediction%20for%20BOF%20steelmaking%20process&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Guicheng%20Wang&rft.date=2010-05&rft.spage=2663&rft.epage=2667&rft.pages=2663-2667&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498736&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&rft_dat=%3Cieee_CHZPO%3E5498736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3430ac13fd7043a01546227639b6c552bc41b8d743901f6761baadbb52afe2f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498736&rfr_iscdi=true