Loading…
Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes
The emulation of wireless nodes spatial position is a practice used by deployment engineers and network planners to analyze the characteristics of a network. In particular, nodes geolocation will directly impact factors such as connectivity, signals fidelity, and service quality. In literature, in a...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Abdulla, M Shayan, Y R |
description | The emulation of wireless nodes spatial position is a practice used by deployment engineers and network planners to analyze the characteristics of a network. In particular, nodes geolocation will directly impact factors such as connectivity, signals fidelity, and service quality. In literature, in addition to typical homogenous scattering, normal distribution is frequently used to model mobiles concentration in a cellular system. Moreover, Gaussian dropping is often considered as an effective placement method for airborne sensor deployment. Despite the practicality of this model, getting the network channel loss distribution still relies on exhaustive Monte Carlo simulation. In this paper, we argue the need for this inefficient approach and hence derived a generic and exact closed-form expression for the path-loss distribution density between a base-station and a network of nodes. Simulation was used to reaffirm the validity of the theoretical analysis using values from the new IEEE 802.20 standard. |
doi_str_mv | 10.1109/ICC.2010.5502200 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5502200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5502200</ieee_id><sourcerecordid>5502200</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b596c0d482e1cf85faed7e1d5fa385127016205ce47f6aed516ef7f3b73072b3</originalsourceid><addsrcrecordid>eNpFkDtPw0AQhI9HJJxAj0TjP3Bh997uQA4JkSxIkYIusn174lCCkc8p8u-xRCSK0ezo02wxjN0jzBGheFyX5VzAmLQGIQAu2BSVUMookB-XLMNCOo7Oyat_IPB6BGOBSwN2wjKH3KhCK3vDpil9AWhRSMzYU7nvEnm-7PpDvqmHT151KeWbnnxsh67Pw6hVfUwp1t_7U76IaehjcxzI52-dp3TLJqHeJ7o7-4xtly_b8pVX76t1-VzxiFYPvNGFacErJwjb4HSoyVtCPx7SaRQW0AjQLSkbzMg0Ggo2yMZKsKKRM_bw9zYS0e6nj4e6P-3Oi8hf9hhN8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abdulla, M ; Shayan, Y R</creator><creatorcontrib>Abdulla, M ; Shayan, Y R</creatorcontrib><description>The emulation of wireless nodes spatial position is a practice used by deployment engineers and network planners to analyze the characteristics of a network. In particular, nodes geolocation will directly impact factors such as connectivity, signals fidelity, and service quality. In literature, in addition to typical homogenous scattering, normal distribution is frequently used to model mobiles concentration in a cellular system. Moreover, Gaussian dropping is often considered as an effective placement method for airborne sensor deployment. Despite the practicality of this model, getting the network channel loss distribution still relies on exhaustive Monte Carlo simulation. In this paper, we argue the need for this inefficient approach and hence derived a generic and exact closed-form expression for the path-loss distribution density between a base-station and a network of nodes. Simulation was used to reaffirm the validity of the theoretical analysis using values from the new IEEE 802.20 standard.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 1424464021</identifier><identifier>ISBN: 9781424464029</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 142446403X</identifier><identifier>EISBN: 9781424464043</identifier><identifier>EISBN: 1424464048</identifier><identifier>EISBN: 9781424464036</identifier><identifier>DOI: 10.1109/ICC.2010.5502200</identifier><identifier>LCCN: 81-649547</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communications Society ; Emulation ; Gaussian distribution ; Global Positioning System ; Humans ; Peer to peer computing ; Scattering ; Stochastic processes ; Surface topography ; Wireless sensor networks</subject><ispartof>2010 IEEE International Conference on Communications, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5502200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5502200$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdulla, M</creatorcontrib><creatorcontrib>Shayan, Y R</creatorcontrib><title>Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes</title><title>2010 IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>The emulation of wireless nodes spatial position is a practice used by deployment engineers and network planners to analyze the characteristics of a network. In particular, nodes geolocation will directly impact factors such as connectivity, signals fidelity, and service quality. In literature, in addition to typical homogenous scattering, normal distribution is frequently used to model mobiles concentration in a cellular system. Moreover, Gaussian dropping is often considered as an effective placement method for airborne sensor deployment. Despite the practicality of this model, getting the network channel loss distribution still relies on exhaustive Monte Carlo simulation. In this paper, we argue the need for this inefficient approach and hence derived a generic and exact closed-form expression for the path-loss distribution density between a base-station and a network of nodes. Simulation was used to reaffirm the validity of the theoretical analysis using values from the new IEEE 802.20 standard.</description><subject>Communications Society</subject><subject>Emulation</subject><subject>Gaussian distribution</subject><subject>Global Positioning System</subject><subject>Humans</subject><subject>Peer to peer computing</subject><subject>Scattering</subject><subject>Stochastic processes</subject><subject>Surface topography</subject><subject>Wireless sensor networks</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>1424464021</isbn><isbn>9781424464029</isbn><isbn>142446403X</isbn><isbn>9781424464043</isbn><isbn>1424464048</isbn><isbn>9781424464036</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkDtPw0AQhI9HJJxAj0TjP3Bh997uQA4JkSxIkYIusn174lCCkc8p8u-xRCSK0ezo02wxjN0jzBGheFyX5VzAmLQGIQAu2BSVUMookB-XLMNCOo7Oyat_IPB6BGOBSwN2wjKH3KhCK3vDpil9AWhRSMzYU7nvEnm-7PpDvqmHT151KeWbnnxsh67Pw6hVfUwp1t_7U76IaehjcxzI52-dp3TLJqHeJ7o7-4xtly_b8pVX76t1-VzxiFYPvNGFacErJwjb4HSoyVtCPx7SaRQW0AjQLSkbzMg0Ggo2yMZKsKKRM_bw9zYS0e6nj4e6P-3Oi8hf9hhN8w</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Abdulla, M</creator><creator>Shayan, Y R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201005</creationdate><title>Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes</title><author>Abdulla, M ; Shayan, Y R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b596c0d482e1cf85faed7e1d5fa385127016205ce47f6aed516ef7f3b73072b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Communications Society</topic><topic>Emulation</topic><topic>Gaussian distribution</topic><topic>Global Positioning System</topic><topic>Humans</topic><topic>Peer to peer computing</topic><topic>Scattering</topic><topic>Stochastic processes</topic><topic>Surface topography</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdulla, M</creatorcontrib><creatorcontrib>Shayan, Y R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdulla, M</au><au>Shayan, Y R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes</atitle><btitle>2010 IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2010-05</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>1424464021</isbn><isbn>9781424464029</isbn><eisbn>142446403X</eisbn><eisbn>9781424464043</eisbn><eisbn>1424464048</eisbn><eisbn>9781424464036</eisbn><abstract>The emulation of wireless nodes spatial position is a practice used by deployment engineers and network planners to analyze the characteristics of a network. In particular, nodes geolocation will directly impact factors such as connectivity, signals fidelity, and service quality. In literature, in addition to typical homogenous scattering, normal distribution is frequently used to model mobiles concentration in a cellular system. Moreover, Gaussian dropping is often considered as an effective placement method for airborne sensor deployment. Despite the practicality of this model, getting the network channel loss distribution still relies on exhaustive Monte Carlo simulation. In this paper, we argue the need for this inefficient approach and hence derived a generic and exact closed-form expression for the path-loss distribution density between a base-station and a network of nodes. Simulation was used to reaffirm the validity of the theoretical analysis using values from the new IEEE 802.20 standard.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2010.5502200</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-3607 |
ispartof | 2010 IEEE International Conference on Communications, 2010, p.1-6 |
issn | 1550-3607 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_5502200 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communications Society Emulation Gaussian distribution Global Positioning System Humans Peer to peer computing Scattering Stochastic processes Surface topography Wireless sensor networks |
title | Closed-Form Path-Loss Predictor for Gaussianly Distributed Nodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closed-Form%20Path-Loss%20Predictor%20for%20Gaussianly%20Distributed%20Nodes&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Communications&rft.au=Abdulla,%20M&rft.date=2010-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=1424464021&rft.isbn_list=9781424464029&rft_id=info:doi/10.1109/ICC.2010.5502200&rft.eisbn=142446403X&rft.eisbn_list=9781424464043&rft.eisbn_list=1424464048&rft.eisbn_list=9781424464036&rft_dat=%3Cieee_6IE%3E5502200%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b596c0d482e1cf85faed7e1d5fa385127016205ce47f6aed516ef7f3b73072b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5502200&rfr_iscdi=true |