Loading…
Simultaneous on-line monitoring and wave-net learning
Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learnin...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method. |
---|---|
ISSN: | 2164-7054 |
DOI: | 10.1109/IRANIANCEE.2010.5506984 |