Loading…
III-V MOSFETs: Scaling laws, scaling limits, fabrication processes
III-V FETs are in development for both THz and VLSI applications. In VLSI, high drive currents are sought at low gate drive voltages, while in THz circuits, high cutoff frequencies are required. In both cases, source and drain access resistivities must be decreased, and transconductance and drain cu...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | III-V FETs are in development for both THz and VLSI applications. In VLSI, high drive currents are sought at low gate drive voltages, while in THz circuits, high cutoff frequencies are required. In both cases, source and drain access resistivities must be decreased, and transconductance and drain current per unit gate width must be increased by reducing the gate dielectric thickness, reducing the inversion layer depth, and increasing the channel 2-DEG density of states. We here describe both nm self-aligned fabrication processes and channel designs to address these scaling limits. |
---|---|
ISSN: | 1092-8669 |
DOI: | 10.1109/ICIPRM.2010.5515914 |