Loading…
N-polar GaN-based MIS-HEMTs for Mixed Signal Applications
GaN-based transistors are attractive for the next generation RF power and mixed signal electronics due to their high breakdown field and high carrier saturation velocity. III-N high electron mobility transistors (HEMTs) fabricated on the N-face of GaN are well-suited to address the problems of poor...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | GaN-based transistors are attractive for the next generation RF power and mixed signal electronics due to their high breakdown field and high carrier saturation velocity. III-N high electron mobility transistors (HEMTs) fabricated on the N-face of GaN are well-suited to address the problems of poor electron confinement and high ohmic contact resistance in the highly scaled transistors. At 4 GHz, N-polar metal-insulator-semiconductor (MIS)-HEMTs with a gate length of 0.7 micron exhibited a highest output power density (Pout) of 8.1 W/mm and a highest power-added efficiency (PAE) of 71%, while a Pout of 4.2 W/mm and a PAE of 49% were achieved at 10 GHz. A high speed N-polar MIS-HEMT fabricated with a gate-first self-aligned InGaN-based ohmic contact regrowth technology was characterized, demonstrating an ultra-low contact resistance of 23 ohm-micron and a state-of-the-art fTxLG product of 16.8 GHz-micron with a gate length of 130 nm. |
---|---|
ISSN: | 0149-645X 2576-7216 |
DOI: | 10.1109/MWSYM.2010.5518201 |