Loading…
Explaining Classification by Finding Response-Related Subgroups in Data
A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The c...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The clusters are described by simple rules, meant to be easy for a human to understand. The key points of the work are presenting a modular framework for explaining the classification, and studying and comparing two different approaches for extracting a metric from a classifier model. |
---|---|
DOI: | 10.1109/SNPD.2010.20 |