Loading…

Explaining Classification by Finding Response-Related Subgroups in Data

A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The c...

Full description

Saved in:
Bibliographic Details
Main Authors: Parviainen, Elina, Vehtari, Aki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 75
container_issue
container_start_page 69
container_title
container_volume
creator Parviainen, Elina
Vehtari, Aki
description A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The clusters are described by simple rules, meant to be easy for a human to understand. The key points of the work are presenting a modular framework for explaining the classification, and studying and comparing two different approaches for extracting a metric from a classifier model.
doi_str_mv 10.1109/SNPD.2010.20
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5521503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5521503</ieee_id><sourcerecordid>5521503</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-275491f58d250126fc5c177aac81559c8f932862152628d2f0bfb1bb1c8a6ee33</originalsourceid><addsrcrecordid>eNpVjE1PwyAcxjFmiTp78-aFL9AJf6DA0XQvmixqtt0XoLBgKm1Gl7hvbxe9-Fye_PK8IPRAyYxSop-2bx_zGZARgVyhQktFOXAuOVB9_Y-hmqC7S1OTkdkNKnL-JKO4AFDyFq0W331rYorpgOvW5BxDdGaIXcL2jJcxNZdk43PfpezLjW_N4Bu8PdnDsTv1GceE52Yw92gSTJt98edTtFsudvVLuX5fvdbP6zJqMpQgBdc0CNWAIBSq4ISjUhrjFBVCOxU0A1UBFVDBWArEBkutpU6ZynvGpujx9zZ67_f9MX6Z43kvxLggjP0AkoNNuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Explaining Classification by Finding Response-Related Subgroups in Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parviainen, Elina ; Vehtari, Aki</creator><creatorcontrib>Parviainen, Elina ; Vehtari, Aki</creatorcontrib><description>A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The clusters are described by simple rules, meant to be easy for a human to understand. The key points of the work are presenting a modular framework for explaining the classification, and studying and comparing two different approaches for extracting a metric from a classifier model.</description><identifier>ISBN: 9781424474226</identifier><identifier>ISBN: 1424474221</identifier><identifier>EISBN: 9781424474219</identifier><identifier>EISBN: 1424474213</identifier><identifier>DOI: 10.1109/SNPD.2010.20</identifier><identifier>LCCN: 2010904473</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical engineering ; Clustering algorithms ; Computer networks ; Concurrent computing ; data abstraction ; Data mining ; Distributed computing ; Input variables ; MLP classifier ; Predictive models ; Software engineering ; subgroup rules ; supervised clustering</subject><ispartof>2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2010, p.69-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5521503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5521503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parviainen, Elina</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><title>Explaining Classification by Finding Response-Related Subgroups in Data</title><title>2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing</title><addtitle>SNPD</addtitle><description>A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The clusters are described by simple rules, meant to be easy for a human to understand. The key points of the work are presenting a modular framework for explaining the classification, and studying and comparing two different approaches for extracting a metric from a classifier model.</description><subject>Biomedical computing</subject><subject>Biomedical engineering</subject><subject>Clustering algorithms</subject><subject>Computer networks</subject><subject>Concurrent computing</subject><subject>data abstraction</subject><subject>Data mining</subject><subject>Distributed computing</subject><subject>Input variables</subject><subject>MLP classifier</subject><subject>Predictive models</subject><subject>Software engineering</subject><subject>subgroup rules</subject><subject>supervised clustering</subject><isbn>9781424474226</isbn><isbn>1424474221</isbn><isbn>9781424474219</isbn><isbn>1424474213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjE1PwyAcxjFmiTp78-aFL9AJf6DA0XQvmixqtt0XoLBgKm1Gl7hvbxe9-Fye_PK8IPRAyYxSop-2bx_zGZARgVyhQktFOXAuOVB9_Y-hmqC7S1OTkdkNKnL-JKO4AFDyFq0W331rYorpgOvW5BxDdGaIXcL2jJcxNZdk43PfpezLjW_N4Bu8PdnDsTv1GceE52Yw92gSTJt98edTtFsudvVLuX5fvdbP6zJqMpQgBdc0CNWAIBSq4ISjUhrjFBVCOxU0A1UBFVDBWArEBkutpU6ZynvGpujx9zZ67_f9MX6Z43kvxLggjP0AkoNNuQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Parviainen, Elina</creator><creator>Vehtari, Aki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Explaining Classification by Finding Response-Related Subgroups in Data</title><author>Parviainen, Elina ; Vehtari, Aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-275491f58d250126fc5c177aac81559c8f932862152628d2f0bfb1bb1c8a6ee33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical computing</topic><topic>Biomedical engineering</topic><topic>Clustering algorithms</topic><topic>Computer networks</topic><topic>Concurrent computing</topic><topic>data abstraction</topic><topic>Data mining</topic><topic>Distributed computing</topic><topic>Input variables</topic><topic>MLP classifier</topic><topic>Predictive models</topic><topic>Software engineering</topic><topic>subgroup rules</topic><topic>supervised clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Parviainen, Elina</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parviainen, Elina</au><au>Vehtari, Aki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Explaining Classification by Finding Response-Related Subgroups in Data</atitle><btitle>2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing</btitle><stitle>SNPD</stitle><date>2010-06</date><risdate>2010</risdate><spage>69</spage><epage>75</epage><pages>69-75</pages><isbn>9781424474226</isbn><isbn>1424474221</isbn><eisbn>9781424474219</eisbn><eisbn>1424474213</eisbn><abstract>A method for explaining results of a regression based classifier is proposed. The data is clustered using a metric extracted from the classifier. This way, clusters found are related to classifier predictions, and each cluster can be considered a possible explanation for classification result. The clusters are described by simple rules, meant to be easy for a human to understand. The key points of the work are presenting a modular framework for explaining the classification, and studying and comparing two different approaches for extracting a metric from a classifier model.</abstract><pub>IEEE</pub><doi>10.1109/SNPD.2010.20</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424474226
ispartof 2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2010, p.69-75
issn
language eng
recordid cdi_ieee_primary_5521503
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical computing
Biomedical engineering
Clustering algorithms
Computer networks
Concurrent computing
data abstraction
Data mining
Distributed computing
Input variables
MLP classifier
Predictive models
Software engineering
subgroup rules
supervised clustering
title Explaining Classification by Finding Response-Related Subgroups in Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Explaining%20Classification%20by%20Finding%20Response-Related%20Subgroups%20in%20Data&rft.btitle=2010%2011th%20ACIS%20International%20Conference%20on%20Software%20Engineering,%20Artificial%20Intelligence,%20Networking%20and%20Parallel/Distributed%20Computing&rft.au=Parviainen,%20Elina&rft.date=2010-06&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.isbn=9781424474226&rft.isbn_list=1424474221&rft_id=info:doi/10.1109/SNPD.2010.20&rft.eisbn=9781424474219&rft.eisbn_list=1424474213&rft_dat=%3Cieee_6IE%3E5521503%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-275491f58d250126fc5c177aac81559c8f932862152628d2f0bfb1bb1c8a6ee33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5521503&rfr_iscdi=true