Loading…
Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm
A new evolutionary algorithm known as the shuffled frog leaping algorithm is presented in this paper, to solve the unit commitment (UC) problem. This integer-coded algorithm has been developed to minimize the total energy dispatch cost over the scheduling horizon while all of the constraints should...
Saved in:
Published in: | IEEE transactions on power systems 2011-05, Vol.26 (2), p.573-581 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new evolutionary algorithm known as the shuffled frog leaping algorithm is presented in this paper, to solve the unit commitment (UC) problem. This integer-coded algorithm has been developed to minimize the total energy dispatch cost over the scheduling horizon while all of the constraints should be satisfied. In addition, minimum up/down-time constraints have been directly coded not using the penalty function method. The proposed algorithm has been applied to ten up to 100 generating units, considering one-day and seven-day scheduling periods. The most important merit of the proposed method is its high convergence speed. The simulation results of the proposed algorithm have been compared with the results of algorithms such as Lagrangian relaxation, genetic algorithm, particle swarm optimization, and bacterial foraging. The comparison results testify to the efficiency of the proposed method. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2010.2052639 |