A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform
The easy path wavelet transform (EPWT) has recently been proposed by one of the authors as a tool for sparse representations of bivariate functions from discrete data, in particular from image data. The EPWT is a locally adaptive wavelet transform. It works along pathways through the array of functi...
Saved in:
Published in: | IEEE transactions on image processing 2011-02, Vol.20 (2), p.372-381 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The easy path wavelet transform (EPWT) has recently been proposed by one of the authors as a tool for sparse representations of bivariate functions from discrete data, in particular from image data. The EPWT is a locally adaptive wavelet transform. It works along pathways through the array of function values and exploits the local correlations of the given data in a simple appropriate manner. However, the EPWT suffers from its adaptivity costs that arise from the storage of path vectors. In this paper, we propose a new hybrid method for image approximation that exploits the advantages of the usual tensor product wavelet transform for the representation of smooth images and uses the EPWT for an efficient representation of edges and texture. Numerical results show the efficiency of this procedure. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2010.2061861 |