Loading…
A novel truncated squarer with linear compensation function
A truncated binary squarer is a squarer with a n bit input that produces a n bit output. The proposed design minimizes the mean square error of the squarer and results in a very simple and fast circuital implementation. The squarer, compared against state of the art circuits, provides a reduction of...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A truncated binary squarer is a squarer with a n bit input that produces a n bit output. The proposed design minimizes the mean square error of the squarer and results in a very simple and fast circuital implementation. The squarer, compared against state of the art circuits, provides a reduction of the mean square error ranging from 20% to 5%. At the same time, the proposed squarer is able to reduce the power dissipation, reduce the silicon area occupation, and increase the maximum working frequency. Implementations results are provided for a 0.18μm technology. |
---|---|
ISSN: | 0271-4302 2158-1525 |
DOI: | 10.1109/ISCAS.2010.5537591 |