Loading…
Statistical and entropy based multi purpose human motion analysis
As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This pape...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | V1-738 |
container_issue | |
container_start_page | V1-734 |
container_title | |
container_volume | 1 |
creator | Chin-Poo Lee Kian-Ming Lim Wei-Lee Woon |
description | As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This paper proposes a general purpose HMA method. It is based on the idea that human beings tend to exhibit random motion patterns during abnormal situations. Hence, angular and linear displacements of limb movements are characterized using basic statistical quantities. In addition, it is enhanced with the entropy of the Fourier spectrum to measure the randomness of the abnormal behavior. Various experiments have been conducted and prove that the proposed method has very high classification accuracy in identifying anomalous behavior. |
doi_str_mv | 10.1109/ICSPS.2010.5555261 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5555261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5555261</ieee_id><sourcerecordid>5555261</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-48b4e6dbfd614124f4225dbafee890c2b539b28d79ed8f4faa7372e67748e5c43</originalsourceid><addsrcrecordid>eNpVj8tKxDAYhSMiKGNfQDd5gY5J-rdJlkPxMjCg0NkPSfMHI73RpIu-vQVn49kcPvg4cAh54mzPOdMvx7r5avaCbVxuERW_IZmWioMAqJQuytt_LNQ9yWL8YVtg0wU8kEOTTAoxhdZ01AyO4pDmcVqpNREd7ZcuBTot8zRGpN9LbwbajymMwyabbo0hPpI7b7qI2bV35Pz2eq4_8tPn-7E-nPKgWcpBWcDKWe8qDlyAByFKZ41HVJq1wpaFtkI5qdEpD94YWUiBlZSgsGyh2JHnv9mAiJdpDr2Z18v1d_ELdq1Mqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical and entropy based multi purpose human motion analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chin-Poo Lee ; Kian-Ming Lim ; Wei-Lee Woon</creator><creatorcontrib>Chin-Poo Lee ; Kian-Ming Lim ; Wei-Lee Woon</creatorcontrib><description>As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This paper proposes a general purpose HMA method. It is based on the idea that human beings tend to exhibit random motion patterns during abnormal situations. Hence, angular and linear displacements of limb movements are characterized using basic statistical quantities. In addition, it is enhanced with the entropy of the Fourier spectrum to measure the randomness of the abnormal behavior. Various experiments have been conducted and prove that the proposed method has very high classification accuracy in identifying anomalous behavior.</description><identifier>ISBN: 9781424468928</identifier><identifier>ISBN: 1424468922</identifier><identifier>EISBN: 9781424468935</identifier><identifier>EISBN: 1424468930</identifier><identifier>DOI: 10.1109/ICSPS.2010.5555261</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Computer vision ; Entropy ; Hidden Markov models ; Image Processing ; Motion Analysis ; Motion segmentation ; Neural Networks ; Tracking</subject><ispartof>2010 2nd International Conference on Signal Processing Systems, 2010, Vol.1, p.V1-734-V1-738</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5555261$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5555261$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin-Poo Lee</creatorcontrib><creatorcontrib>Kian-Ming Lim</creatorcontrib><creatorcontrib>Wei-Lee Woon</creatorcontrib><title>Statistical and entropy based multi purpose human motion analysis</title><title>2010 2nd International Conference on Signal Processing Systems</title><addtitle>ICSPS</addtitle><description>As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This paper proposes a general purpose HMA method. It is based on the idea that human beings tend to exhibit random motion patterns during abnormal situations. Hence, angular and linear displacements of limb movements are characterized using basic statistical quantities. In addition, it is enhanced with the entropy of the Fourier spectrum to measure the randomness of the abnormal behavior. Various experiments have been conducted and prove that the proposed method has very high classification accuracy in identifying anomalous behavior.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Entropy</subject><subject>Hidden Markov models</subject><subject>Image Processing</subject><subject>Motion Analysis</subject><subject>Motion segmentation</subject><subject>Neural Networks</subject><subject>Tracking</subject><isbn>9781424468928</isbn><isbn>1424468922</isbn><isbn>9781424468935</isbn><isbn>1424468930</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxDAYhSMiKGNfQDd5gY5J-rdJlkPxMjCg0NkPSfMHI73RpIu-vQVn49kcPvg4cAh54mzPOdMvx7r5avaCbVxuERW_IZmWioMAqJQuytt_LNQ9yWL8YVtg0wU8kEOTTAoxhdZ01AyO4pDmcVqpNREd7ZcuBTot8zRGpN9LbwbajymMwyabbo0hPpI7b7qI2bV35Pz2eq4_8tPn-7E-nPKgWcpBWcDKWe8qDlyAByFKZ41HVJq1wpaFtkI5qdEpD94YWUiBlZSgsGyh2JHnv9mAiJdpDr2Z18v1d_ELdq1Mqg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Chin-Poo Lee</creator><creator>Kian-Ming Lim</creator><creator>Wei-Lee Woon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Statistical and entropy based multi purpose human motion analysis</title><author>Chin-Poo Lee ; Kian-Ming Lim ; Wei-Lee Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-48b4e6dbfd614124f4225dbafee890c2b539b28d79ed8f4faa7372e67748e5c43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Entropy</topic><topic>Hidden Markov models</topic><topic>Image Processing</topic><topic>Motion Analysis</topic><topic>Motion segmentation</topic><topic>Neural Networks</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin-Poo Lee</creatorcontrib><creatorcontrib>Kian-Ming Lim</creatorcontrib><creatorcontrib>Wei-Lee Woon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin-Poo Lee</au><au>Kian-Ming Lim</au><au>Wei-Lee Woon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical and entropy based multi purpose human motion analysis</atitle><btitle>2010 2nd International Conference on Signal Processing Systems</btitle><stitle>ICSPS</stitle><date>2010-07</date><risdate>2010</risdate><volume>1</volume><spage>V1-734</spage><epage>V1-738</epage><pages>V1-734-V1-738</pages><isbn>9781424468928</isbn><isbn>1424468922</isbn><eisbn>9781424468935</eisbn><eisbn>1424468930</eisbn><abstract>As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This paper proposes a general purpose HMA method. It is based on the idea that human beings tend to exhibit random motion patterns during abnormal situations. Hence, angular and linear displacements of limb movements are characterized using basic statistical quantities. In addition, it is enhanced with the entropy of the Fourier spectrum to measure the randomness of the abnormal behavior. Various experiments have been conducted and prove that the proposed method has very high classification accuracy in identifying anomalous behavior.</abstract><pub>IEEE</pub><doi>10.1109/ICSPS.2010.5555261</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424468928 |
ispartof | 2010 2nd International Conference on Signal Processing Systems, 2010, Vol.1, p.V1-734-V1-738 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5555261 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Artificial neural networks Computer vision Entropy Hidden Markov models Image Processing Motion Analysis Motion segmentation Neural Networks Tracking |
title | Statistical and entropy based multi purpose human motion analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20and%20entropy%20based%20multi%20purpose%20human%20motion%20analysis&rft.btitle=2010%202nd%20International%20Conference%20on%20Signal%20Processing%20Systems&rft.au=Chin-Poo%20Lee&rft.date=2010-07&rft.volume=1&rft.spage=V1-734&rft.epage=V1-738&rft.pages=V1-734-V1-738&rft.isbn=9781424468928&rft.isbn_list=1424468922&rft_id=info:doi/10.1109/ICSPS.2010.5555261&rft.eisbn=9781424468935&rft.eisbn_list=1424468930&rft_dat=%3Cieee_6IE%3E5555261%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-48b4e6dbfd614124f4225dbafee890c2b539b28d79ed8f4faa7372e67748e5c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5555261&rfr_iscdi=true |